Gas geochemistry in Pohang, South Korea: Information on the active fault distribution near the EGS site

HEEJUN KIM^{1*}, HYUNWOO LEE¹, JAEMIN LEE^{2,3}, HYUN A LEE², NAM CHIL WOO², YOUN-SOO LEE⁴, TAKANORI KAGOSHIMA⁵, NAOTO TAKAHATA⁵, YUJI SANO^{5,6}

¹Seoul National University

(*Correspondence: sooneeujuro@snu.ac.kr)

²Yonsei University

³Korea Institute of Geoscience and Mineral Resources

⁴Pohang University of Science and Technology

⁵University of Tokyo

⁶Tianjin University

An Mw 5.5 earthquake occurred in Pohang, South Korea on November 15, 2017, had a huge influence on Korean society [1]. Despite a lot of controversy on the causality between the earthquake and the enhanced geothermal system (EGS), the location of active faults is insufficiently known. Here we report new results of the geochemical and isotopic analyses of dissolved gases in groundwater in the Heunghae, Yeonil, and Sinkwang areas from the Pohang region. Base on the N2-Ar-He relationship, all samples from the Heunghae and Yeonil areas show the mantle contribution, except for the Sinkwang area, where all samples are atmospheric. N₂ and CO₂ are the main components of the gas samples, where some of the Heunghae and Yeonil areas contain substantial CH₄. Although δ^{15} N-N₂ (0.2 to 3.6‰), δ^{13} C-CO₂ (-27.3 to -16.0‰) and δ^{13} C-CH₄ (-76.1 to -70.0‰) values indicate that these components are derived from organic substances in sedimentary layer, ³He/⁴He ratios (up to 3.83 Ra) represent the significant mantle contribution in the Heunghae and Yeonil areas [2, 3]. Through the distribution of high ³He/⁴He ratios, we propose the Heunghae, Namsong, and Jamyeong faults as the passage of mantle-derived fluids and their locations [4]. Computed ³He fluxes of the Heunghae (120 to 3,000 atoms cm⁻² sec⁻¹), Namsong (52 to 1,300 atoms cm⁻² sec⁻¹), and Jamyeong (83 to 2,100 atoms cm⁻² sec⁻¹) faults are comparable to other major active faults around the world, suggesting either high porosity or high helium flow rates [5]. Therefore, our results attest that there are active faults near the EGS facilities, which supply the foundation for future studies.

Ellsworth et al. (2019) Seismol.Res.Lett. 90, 1844-1858.
Sano & Marty (1995) Chem. Geol. 119, 265-274.
Sano et al. (2001) Chem. Geol. 171, 263-271.
Umeda & Ninomiya (2009) G³.
Sulongoski et al. (2013) Chem. Geol. 339, 92-102.