Dual nitrate isotope constraints on the origin of nutrients in Baffin Bay and in the Labrador Sea

M. Kienast 1* , N. Lehmann 1 , C. Buchwald 1 , S. Davin 1 , J. Granger 2 , O. Sherwood 3

 ¹Dept. Oceanography, Dalhousie University, Halifax, NS, Canada (*correspondence: markus.kienast@dal.ca)
²Dept. Marine Sciences, University of Connecticut, Groton, CT 06340, USA

³Dept. Earth and Environmental Sciences, Dalhousie University, Halifax, NS, Canada

The Canadian Arctic Ocean connects the North Pacific, an area of active denitrification, and the North Atlantic, a region of extensive N₂ fixation. Here, we present water column natural abundance nitrogen (N) and oxygen (O) isotope ratios of nitrate (NO₃-) collected throughout the Canadian Archipelago, Baffin Bay and the Labrador Sea. These data shed light on both the origin and internal cycling of NO₃- in Baffin Bay and in the Labrador Sea.

Benthic coupled nitrification-denitrification on the Bering and Chukchi shelves and remineralization along the transit across the Chukchi shelf impart a pronounced enrichment in $\delta^{15}N$ and a coincident minimum in $\delta^{18}O$ on the cold Pacific-derived halocline waters observed throughout the study region. The Baffin Island Current and the Labrador Current subsequently carry this ^{15}N enrichment and relatively low $\delta^{18}O$ southward along the western Baffin Bay and into the western Labrador Sea.

Elevated $\delta^{15}N_{NO3}$ and concurrently low $\delta^{18}O_{NO3}$ in the deep/bottom water of Baffin Bay indicate substantial remineralization of surface ocean export production largely fueled by Pacific-derived nutrients. Nutrients supplied to Baffin Bay are hence stripped from surface waters and trapped at depth over long timescales, where sedimentary denitrification further adds to the N removal capacity of the Arctic Ocean.

The overall trends in NO₃⁻ isotope ratios will be discussed in the context of regional circulation patterns and N biogeochemistry in the Canadian Archipelago and further downstream in the Baffin Bay and Labrador Sea.