Dual nitrate isotope constraints on the origin of nutrients in Baffin Bay and in the Labrador Sea

M. KIENAST1*, N. LEHMANN1, C. BUCHWALD1, S. DAVIN1, J. GRANGER2, O. SHERWOOD3

1Dept. Oceanography, Dalhousie University, Halifax, NS, Canada (*correspondence: markus.kienast@dal.ca)
2Dept. Marine Sciences, University of Connecticut, Groton, CT 06340, USA
3Dept. Earth and Environmental Sciences, Dalhousie University, Halifax, NS, Canada

The Canadian Arctic Ocean connects the North Pacific, an area of active denitrification, and the North Atlantic, a region of extensive N\textsubscript{2} fixation. Here, we present water column natural abundance nitrogen (N) and oxygen (O) isotope ratios of nitrate (NO\textsubscript{3}–) collected throughout the Canadian Archipelago, Baffin Bay and the Labrador Sea. These data shed light on both the origin and internal cycling of NO\textsubscript{3}– in Baffin Bay and in the Labrador Sea.

Benthic coupled nitrification-denitrification on the Bering and Chukchi shelves and remineralization along the transit across the Chukchi shelf impart a pronounced enrichment in δ15N and a coincident minimum in δ18O on the cold Pacific-derived halocline waters observed throughout the study region. The Baffin Island Current and the Labrador Current subsequently carry this 15N enrichment and relatively low δ18O southward along the western Baffin Bay and into the western Labrador Sea.

Elevated δ15N\textsubscript{NO3} and concurrently low δ18O\textsubscript{NO3} in the deep/bottom water of Baffin Bay indicate substantial remineralization of surface ocean export production largely fueled by Pacific-derived nutrients. Nutrients supplied to Baffin Bay are hence stripped from surface waters and trapped at depth over long timescales, where sedimentary denitrification further adds to the N removal capacity of the Arctic Ocean.

The overall trends in NO\textsubscript{3}– isotope ratios will be discussed in the context of regional circulation patterns and N biogeochemistry in the Canadian Archipelago and further downstream in the Baffin Bay and Labrador Sea.