In situ determination of Sb isotopes by fs-LA-MC-ICP-MS

A. B. Kaufmann^{1*}, M. Lazarov¹, S. Weyer¹ And J. Majzlan²

 ¹ Institute of Mineralogy, Leibniz University Hannover, Germany (*a.kaufmann@mineralogie.uni-hannover.de)
² Institute of Geosciences, Friedrich Schiller University Jena, Germany

Antimony (Sb) is a redox sensitive metalloid that occurs in the environment mostly as Sb^{III} and $Sb^V.$ A previous experimental study [1] indicated isotope fractionation of around 1‰ during reduction of Sb^V to $Sb^{III}.$ Therefore, Sb isotopes could provide valuable information about the role of oxidative weathering of Sb ore deposits. To explore weathering of Sb-bearing minerals, we developed a procedure for in situ Sb isotope analyses by femtosecond LA-MC-ICP-MS at high spatial resolution (~20 μm).

In order to verify our analytical protocols for Sb isotope analyses, synthetic stibnite, homogeneous with respect to the major elements, was used as an in-house standard and was analysed by both femtosecond LA- and by solution MC-ICP-MS. The internal uncertainty of the LA measurements is better than 0.05‰, while replicate measurements of the inhouse standards yield a precision of <0.08‰ (2 σ). In order to correct instrumental mass bias, a Sn standard (NIST SRM 3161a) [2] was introduced during both analytical procedures. Since no certified Sb isotope standard is currently available, δ^{123} Sb values were always recalculated relative to NIST SRM 3102a. Analyses by laser ablation and solution of the inhouse standards agreed within 0.1‰ (δ^{123} Sb).

In contrast to chromatographically purified isotope analyses via solution, laser ablation analyses may be affected by mass interferences from Te and AgO. Therefore, a series of Sb standard solutions, doped with different levels of interfering elements was measured. The isobaric interference of $^{123}\mathrm{Te}$ on $^{123}\mathrm{Sb}$ can be corrected up to a Te/Sb ratio of 0.2 within analytical uncertainties. Due to very low oxide rates, the effect of the $^{107}\mathrm{Ag}^{-16}\mathrm{O}$ interference on $^{123}\mathrm{Sb}$ was insignificant (<0.05‰) up to a Ag/Sb ratio of 2.

First in situ Sb isotope analyses of natural boulangerite, senarmontite and tetrahedrite reveal significant isotopic variations in $\delta^{123} \text{Sb}$ of up to 0.4% within a single grain. These spatial isotopic variations could be the result of mineral weathering at small scales.

- [1] Rouxel et al. (2003), Chem. Geol. 200, 25-40.
- [2] Tanimizu et al. (2011), Geochem. J. 45, 27-32.