A development of SO₂F₂ method to measure sulfate isotopologues

Toshiki Katsuta^{1*}, Yuichiro Ueno^{1,2,3}, Mayuko Nakagawa², Riho Aoki¹, Naohiro Yoshida ^{2,4}

- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan (*correspondence: katsuta.t.aa@m.titech.ac.jp)
- ² Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan
- ³ Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka 237-0061, Japan
- ⁴ Department of Chemical Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan

We have developed a method to measure sulfur and oxygen isotopes ratio of sulfate simultaneously as well as measuring S-O clumped isotopologue. Quantitative conversion from barium sulfate (BaSO₄) into SO₂F₂ is possible by the reaction with F2 and BaSO4 at 280°C for 3 h in a nickel reaction vessel. The product SO₂F₂ was measured on a high-resolution mass spectrometer (MAT253 ULTRA). The overall precision of this method for δ^{34} S, Δ^{33} S, and δ^{18} O values are $\pm 0.01\%$, $\pm 0.02\%$ and $\pm 0.04\%$, respectively. The reproducibility of the $\Delta^{34}S^{18}O$ value in the entire process from fluorination is $\pm 0.17\%$. In order to apply this technique to wide range of natural samples, we have conduted several following tests. First, a natural gypsum was fluorinted directly and compared with the fluorination of BaSO₄ made by dissolution of the same gypsum in hydrochloric acid and reprecipitated as barium sulfate. Both the measured $\Delta^{34}S^{18}O$ values are consistent within the analytical uncertainty. Second, two samples of barium sulfate were mixed with SiO2 of which the $\delta^{18}O$ is 4.4 % in the proportion 3 : 2, and fluorinated to evaluate the effect of impurity. The results showed that the δ^{34} S did not change, but δ^{18} O slightly increase about 2 - 3% with a decrease of $\Delta^{34}S^{18}O$ value about -0.6%. This suggests that purification of natural sulfate sample is nessesary, though re-precipitation as BaSO₄ allow us to measure variety of natural samples.