Stable Sr isotopes of the Middle-Late Permian carbonate: its implication for driving ocean Sr budget change

TOMOMI KANI¹, YUKIO ISOZAKI², KEIJI MISAWA³, Akira Ishikawa⁴, Shigekazu Yoneda⁵

¹ Kumamoto University, Kumamoto, Japan; ² The University of Tokyo, Japan; ³ National Institute of Polar Research, Tachikawa, Japan; ⁴ Tokyo Institute of Technology, Japan; ⁵ National Museum of Nature and Science, Tsukuba, Japan

Stable and radiogenic isotopic composition of Sr (87Sr/86Sr, δ^{88} Sr) of paleoseawater, which are archived in carbonates, can be valid proxies for global change accompanied with ocean Sr budget [1]. We present δ^{88} Sr of oceanic carbonates by double-spike thermal ionization mass-spectrometry (DS-TIMS) for the Middle-Late Permian boundary interval with one of the major extinction events. Analyzed carbonate samples include shallow marine carbonates of shelf facies from South China and of mid-Panthalassan palaeo-atoll facies in Japan. Previous studies confirmed the lowest 87Sr/86Sr value in late Middle Permian followed by drastic increase during the Late Permian to Early Triassic [2]. Likewise, the $\delta^{88} Sr$ values of the analyzed samples demonstrated low values in Middle Permian and increase during the Late Permian. The low δ^{88} Sr values in the Middle Permian indicate the enhanced carbonate weathering, and this may suggest the suppression of reef building under the global cooling recorded in the significant sea level drop.

[1] Vollstaedt et al., 2014, GCA; [2] Korte et al., 2006, PALAEO