Longest continually erupting large igneous province driven by plumeridge interaction

Q. JIANG¹, F. JOURDAN^{1*}, H.K.H. OLIEROOK^{1, 2}, R.E. MERLE³, M.F. COFFIN^{4, 5}, J.M. WHITTAKER⁴

- ¹ John de Laeter Centre and School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
- ² Centre for Exploration Targeting Curtin Node, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
- ³ Swedish Museum of Natural History, S-104 05 Stockholm, Sweden
- ⁴ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
- ⁵ School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469-5790, USA and Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

*presenting author

Large igneous provinces are usually emplaced in one short pulse of ~1-5 million years, or several punctuated, ~1-5 million year pulses. Here, our new plagioclase 40Ar/39Ar plateau ages for the main construct of the Kerguelen large igneous province- the Southern and Central Kerguelen Plateau, Elan Bank and Broken Ridge - show continuous volcanic activity from range from 122.2 \pm 2.6 Ma to 89.9 \pm 1.0 Ma and more specifically from ~122 to ~90 Ma for the Southern Kerguelen Plateau, from ~111 to ~106 Ma for Elan Bank, from ~109 to ~93 Ma for the Central Kerguelen Plateau, and from ~99 to ~98 Ma for Broken Ridge, i.e. a long lifespan of > 32 million years. This suggests that the Kerguelen large igneous province records a previously undocumented emplacement tempo for large igneous provinces. Distinct from short-lived and multiple-pulsed large igneous provinces, we propose that Kerguelen is a new type of large igneous province that formed due to long-term plume-ridge interaction and jump(s) of the spreading ridge towards the plume. Such a process allows for transport of magma products away from the eruption centre, thus creating space for the magma to continuously rise, and results in longlived, continuous magmatic activity.