Sulfur Cycling During Burial Diagenesis in Marine Carbonates

LEI JIANG^{1,2}, MOJTABA FAKHRAEE³, CHUNFANG CAI^{1,3}

¹Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China (<u>lei,jiang@mail.iggcas.ac.cn</u>)

² Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

³ Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA

Reduction of sulfate to sulfide plays a crucial role in global sulfur cycle. However, there is no comprehensive study has included the effects from both microbial sulfate reduction (MSR) and thermochemical sulfate reduction (TSR), in modulation of δ^{34} S signals. Here we report an occurrence of various types of sulfur-bearing components from the Cambrian-Ordovician carbonate system in the Tarim Basin, NW China, coupled with a well-established diagenesis framework. Our results indicate that most of the sulfur-bearing species possess $\delta^{34}S$ values slightly lower than the source sulfate and the sulfide generated by TSR, but substantially higher than the δ^{34} S values of sulfide that evidently is consistent with MSR. Hence, a mixing of sulfide from both MSR and TSR was a most plausible scenario. Building upon this hypothesis, a new sulfur diagenesis model was built for quantifying pooled H₂S from MSR and TSR, thus can help better determine the origin of sulfur-bearing species in many deep burial carbonate systems, and the Neoproterozoic super-heavy pyrite. Our results, further, invoke a deeper look at diagenesis to gain a better mechanistic understanding of the primary signals (e.g., δ^{34} S and δ^{13} C) in marine carbonates, e.g., the Neoproterozoic ones deposited at the dawn of marine animal life.