
Petrologic, Elemental and Isotopic Characterization of Unique Depleted Olivine Microwebsteritic Shergottite Northwest Africa 13179

A. J. IRVING¹, P. K. CARPENTER², M. RIGHTER³, T. J. LAPEN³, J. H. TEPPER⁴ AND B. HOEFNAGELS

¹Dept. of Earth & Space Sciences, University of Washington, Seattle, <u>irvingaj@uw.edu</u>; ²Dept. of Earth & Planet. Sci., Washington Univ., St. Louis; ³Dept. of Earth & Atmos. Sci., Univ. of Houston; ⁴Dept. of Geology, UPS, Tacoma.

A 175 gram crusted stone found in the Sahara is the first known example of an ultramafic Martian meteorite with depleted ITE characteristics. The specimen is a medium-grained (\sim 0.7 mm) aphyric pyroxenite composed mainly of zoned pyroxenes, \sim 15 vol.% olivine and <5 vol.% interstitial maskelynite, plus accessory chromite, Ti-chromite, pyrrhotite, pentlandite, ilmenite, silica polymorph and merrillite. Pyroxene grains are zoned from orthopyroxene cores (Fs_{14.7-14.9}Wo_{1.2-1.4}, FeO/MnO = 28-30) to pigeonite (Fs_{20.5-44.2}Wo_{4.0-12.6}, FeO/MnO = 27-36) and subcalcic augite (Fs_{34.9}Wo_{28.4}, FeO/MnO = 35). Olivine grains are zoned from Fa_{17.7} cores to Fa_{21.6-30.3} rims (FeO/MnO = 44-50).

The bulk rock CaO (4.7 wt.%), Al_2O_3 (3.8 wt.%) and Mg/(Mg+Fe) value (0.75) place this specimen in the ultramafic field of [1], and the REE pattern shows strong depletions in LaSm. The ϵ Hf value of +55.3 confirms an affinity to depleted shergottites like Tissint and at least 15 other presumed launch-paired Martian stones [2]. We interpret NWA 13179 to be the first known igneous cumulate from a (possibly quite ancient) depleted shergottite magma.

References: [1] Irving A. et al. (2010) *LPS* **LXI**, #1547 [2] Lapen T. et al. (2017) *Science Advances* **3**, e1600922.