Triple oxygen isotopes in speleothems: A case study from Cave of the Bells, AZ, USA

Tyler E. Huth^{1*}, Benjamin H. Passey¹, Julia E. Cole¹, Naomi R. Levin¹

¹University of Michigan, Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI, 48109 *tehuth@umich.edu

Speleothems are commonly used as paleoclimate archives because they record climate-related variations in δ^{18} O of precipitation. Although variability in speleothem δ^{18} O is generally understood to relate to climate change, paleoclimate interpretations can be ambiguous because δ^{18} O of precipitation relates to many factors, including precipitation seasonality, intensity, and source region. Evaporation can further modify water δ^{18} O and, within a cave, kinetic effects during mineralization may cause imperfect recording of the δ^{18} O of dripwater.

We address some of these problems by adding more information in the form of the triple isotope parameter $\Delta^{17}O$ (where $\Delta^{17}O = \delta^{17}O - 0.528 \times \delta^{18}O$). We use a model framework to identify which of three primary processes dominated speleothem $\Delta^{17}O$ vs. $\delta^{18}O$ data. In this framework, data defining a horizontal trend (slope ≈ 0 per meg/‰) results from equilibrium fractionation processes in the atmosphere (i.e., Rayleigh distillation; [1]); data defining a negative trend (slope ≤ -2) results from changing aridity (i.e., evaporation; [2]), and data defining a positive trend (slope \approx 7; [3]) theoretically results from disequilibrium isotope effects in caves (e.g., drip rate).

Here, we tested interpretations of the previously investigated Cave of the Bells (COB), AZ, USA speleothem δ^{18} O record. This record, which covers 50–10 ka, has been interpreted largely in terms of precipitation variability, and we therefore hypothesized that Δ^{17} O vs. δ^{18} O data would define a horizontal trend. The null hypotheses were that the slope would match either of the "kinetic" trends caused by evaporation or disequilibrium isotope effects (i.e., slope = -2 or +7, respectively). Our samples define a trend of slope = -0.1 in Δ^{17} O vs. δ^{18} O space that is distinct from the disequilibrium trend, but that is not resolvable from the evaporation trend. These results support previous precipitation-based interpretations of the COB record, but underscore the need for higher precision in Δ^{17} O analyses to better resolve the effects of minor evaporation.

[1] Luz and Barkan, 2010, GCA vol. 74, p. 6276-6286

[2] Surma et al., 2018, Sci Rep vol. 8, 4972

[3] Guo and Zhou, 2019, GCA vol. 267, p. 196-226