Trace oxygen shifts nitrogen metabolism and stimulates nitrogen reduction in low-oxygen marine waters.

JULIA HUGGINS', CELINE MICHIELS', RACHEL SIMISTER', SEAN CROWE'^2

¹University of British Columbia, 2350 Health Sciences Mall, Vancouver BC, Canada ² University of Hong Kong

The oceans are currently losing O₂ as the result of human activity, which may have dramatic effects on global climate and biodiversity. As O2 is depleted to near anoxia, microorganisms transition from O2-based to several possible NO_x-based metabolisms: denitrification, anammox, and dissimilatory nitrite reduction to ammonium (DNRA). These three metabolisms are differentially affected by environmental conditions, and, in turn, have different geochemical outcomes, including nitrogen loss and carbon oxidation. The net consequences of marine O₂-loss may therefore depend on which NO_x-based metabolisms engage as O₂ is depleted. The regulation of NO_x-based metabolisms under low O₂ has received little attention, however, because it is generally assumed that NOx reduction only occurs in the absence of O₂. The threshold for anoxia is typically defined by an analytical O_2 detection limit of $1-2\mu M O_2$, despite evidence that NO_x reduction occurs both above and below this limit. Here, we use stable nitrogen isotope (15N) incubations of seawater collected from a model anoxic marine environment (Saanich Inlet, BC) to determine the rates and pathways of NOx reduction under both anoxic conditions and within a high-resolution range of low O2 conditions $(0.1 - 10\mu M)$. We show that multiple pathways of NO_x-reduction can co-occur in the presence of low O₂, and that these pathways are differentially regulated; anammox and DNRA persist in the presence of up to 8μ M O_2 , while denitrification is inhibited by approximately $4\mu M$ O₂. Furthermore, we demonstrate that rates of denitrification and DNRA are highest under very low O2 concentrations $(0.1-2\mu M)$ rather than fully anoxic conditions, which is a previously unrecognized interaction between O2 and NO2reduction. Additionally, we observed a trade-off between the rates of denitrification and DNRA across these very low O₂ concentrations, highlighting the importance of interactions between competing pathways that would normally be overlooked in studies with low-resolution in O₂. These findings have implications for the biogeochemical models that predict microbial metabolic responses to ocean deoxygenation and their ecological impacts.