Synchrotron X-ray Absorption Spectroscopic Investigation of Uranyl-Chloride Aqueous Solutions at Hydrothermal Conditions

J. BAKER^{*1}, N. AKRAM², D. DHAKAL², R. MAYANOVIC², X. GUO³, X. ZHANG¹, M. KELLEY¹, E. BATISTA¹, P. YANG¹, H. BOUKHALFA¹, A. MIGDISSOV¹, R. ROBACK¹, C-J. SUN⁴, AND H. XU¹

 ¹Los Alamos National Laboratory (*correspondence: jlbaker@lanl.gov)
²Missouri State University
³Washington State University
⁴Argonne National Laboratory

Understanding chemical speciation and coordination of actinides in aqueous solutions at hydrothermal conditions is crucial to addressing a variety of environmental issues surrounding actinides such as their mobility at conditions of nuclear accidents (e.g. Fukushima disaster) and their behavior in high-level nuclear waste disposal in underground repositories. Of specific interest are actinide-bearing aqueous solutions containing ligands potentially found in these environments such as Cl⁻, SO4²⁻, and CO3²⁻ which can complex with actinide ions at high temperatures and pressures.

The coordination environment of UO₂²⁺ was probed with a combination of theoretical modeling and X-ray absorption spectroscopy (XAS), a powerful tool to characterize oxidation state and coordination environments. In this study, we performed in-situ U L-III edge XAS measurements on UO2²⁺-Cl⁻ aqueous solutions ([UO2²⁺]=50mM, [Cl⁻]=1M, 3M, 6M]) at the Advanced Photon Source and the Stanford Synchrotron Radiation Lightsource. Room temperature to 500 °C was explored using a hydrothermal diamond anvil cell with a specially designed radiation enclosure [1]. Our theoretical modeling using density functional theory (DFT) predicts that at 25°C, UO22+ coordinates with 5 equatorial H₂O surrounding the U atom whereas at increased temperatures, the calculations predict Cl⁻ to coordinate, replacing the H₂O. Using the DFT optimized models, analysis of the extended X-ray absorption fine structure region (EXAFS) below 200°C revealed a change in chemical coordination of the UO_2^{2+} from 5-coordinated H₂O to 3-4coordinated H₂O and 1-2-coordinated Cl⁻. At temperautres above 200°C, examination of the X-ray absorption near edge structure (XANES) region of our XAS spectra, we observed a possible X-ray induced reduction from U^{6+} to U^{4+} .

[1] Dhakal et al. (2019) Rev. Sci. Instrum. 90, 083108.