Magma storage beneath Ardestan pluton, Iran; Insights from silicate minerals, zircon signatures and crystal size distribution

SHAHROUZ BABAZADEH ¹, TANYA FURMAN^{2*}, JOHN M. COTTLE ³, DAVOOD RAEISI ⁴, IANNA LIMA^{2,5}

- ¹ Research Institute for Earth Sciences, Tehran 13185-1494, Iran
- ² Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA; tfl3@psu.edu ³ Department of Earth Science University of California,
- Santa Barbara, CA 93106-9630, USA

 ⁴ University of Tehran, Tehran, 14155-64155, Iran
- ⁵ Department of Geosciences, Federal University of Mato Grosso, Cuiabá, Brazil

Crystal cargo origins and bulk rock Zr-based thermometric parameters are fundamental to developing petrogenetic models of magmatism. The Ardestan quartz diorite to tonalite pluton, part of widespread Cenozoic magmatism within the Urumieh-Dokhtar magmatic arc, yielded LA-ICP-MS zircon age of 25.9 \pm 0.3 Ma and 24.6 \pm 0.1 Ma, respectively. The studied rocks are mainly composed of varying proportions of plagioclase feldspar (bytownite in the core to labradoriteandesine composition at the rim), magnesio-hornblende and magnesio-biotite. Zircons are depleted in LREE and enriched in HREE with restricted ranges in(Gd/Yb)_N (0.03-0.07), positive Ce anomalies (Ce/Ce*= 0.4-113), negative Eu anomalies (Eu/Eu*=0.13-0.30) and high (Sm/La)_N (>10) suggesting a magmatic origin. Enrichment in LREEs and moderate to negative Ce anomalies in some zircons is attributed to a change in the host magma composition and/or crystallization of zircon under high aqueous fluid activity near the end of magmatic crystallization. Ti-in-biotite geothermometery gives a mean crystallization temperature of $730\pm$ 56 °C, slightly higher than calculated $T_{Zr,Ti}$ °C (716± 50 °C) and similar to the average $T_{Zr,sat}$ °C (735± 26 °C). These results provide minimum estimates of temperature and indicate zircon crystallized from a fractionated magma. The resulting estimated fO₂ values show fairly high fO₂ (i.e., -13.6 to -16.9), indicating oxidizing crystallization conditions between the Ni-NiO (NNO) and Fe₂O₃-Fe₃O₄ (HM) buffers. Tight linear trends of halogen contents (F and Cl) versus X_{Mg} represent a narrow range of fH2O, fHF and fHCl, clearly indicating that constant physico-chemical conditions throughout biotite growth. H The shape of crystal size distribution curves and the medium Al and Mg contents in amphibole and biotite, respectively, are consistent with a history of magma mixing involving injections of mafic magma into the evolving felsic chamber. Calculated residence time for Ardestan plagioclase crystals of ~630 years support field evidence that these plutons were emplaced at shallow depths.