Tree-ring $\delta^2 H$ chronology of lignin methoxyl groups from Germany reflects Western European temperature changes

T. Anhäuser 1* , B. Sehls 1 , W. Thomas 2 , C. Hartl 3 , M. Greule 1 , D. Scholz 4 , J. Esper 3 and F. Keppler 1

- ¹ Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany (*correspondence: t.anhaeuser@hotmail.com)
- ² Deutscher Wetterdienst, Meteorological Observatory station Hohenpeißenberg, D-82383 Hohenpeissenberg, Germany
- ³ Department of Geography, University of Mainz, D-55128 Mainz, Germany
- ⁴ Institute of Geosciences, University of Mainz, Germany, D-55128 Mainz, Germany

Stable hydrogen isotope ratios of lignin methoxyl groups $(\delta^2 H_{LM})$ of wood have been shown to reflect the climatesensitive $\delta^2 H$ values of precipitation ($\delta^2 H_{\text{precip}}$) modulated by a largely uniform negative isotope fractionation. However, a detailed high-resolutional calibration study evaluating the temporal relationship between tree-ring $\delta^2 H_{LM}$ and sitespecific $\delta^2 H_{\text{precip}}$ data is missing. Here, we compared annually measured $\delta^2 H_{LM}$ values from nine tree-ring series (derived from four Fagus sylvatica L. trees) with nearby instrumental δ²H_{precip} data at Hohenpeißenberg (Germany; ~48°N, 11°E). The nine $\delta^2 H_{LM}$ tree-ring series (common period of overlap 1916-2015) show highly significant inter-series correlations (Rbar = 0.52; p<0.001) indicating strong coherency. We produced therefore a mean $\delta^2 H_{LM}$ chronology which shows highest correlations with annually averaged $\delta^2 H_{precip}$ values (r=0.73; p<0.001) suggesting that $\delta^2 H_{LM}$ reflects primarily an annual integral of δ^2 H values of the tree's source water. The δ²H_{LM} chronology correlates further highly significant with local annual temperature anomalies at Hohenpeißenberg (r=0.56) whereby correlations increase in magnitude for numerous areas west of our study site (r>0.6) covering most of Western Europe. We established a linear regression model between averaged Western European surface air temperatures (range: $30^{\circ}\text{W}-20^{\circ}\text{E}$, $35-60^{\circ}\text{N}$) and the $\delta^{2}\text{H}_{LM}$ chronology yielding r=0.71 (p<0.001). When comparing instrumental and reconstructed large-scale temperature anomalies from 1916-2015, an average absolute deviation in annual reconstructions of as low as 0.3 °C was found. Overall, this study improves not only the understanding of the $\delta^2 H_{\text{nrecin}} - \delta^2 H_{\text{LM}}$ relationship but indicates also that mid-latitudinal $\delta^2 H_{LM}$ values may serve as a valuable proxy for large-scale temperature reconstructions when applied in dendroclimatology.