High-precision analysis of ∆48 and ∆47: Resolving temperature from the kinetic information recorded in carbonates

JENS FIEBIG¹, DAVID BAJNAI¹, NIKLAS LÖFFLER², KATHARINA METHNER², EMILIJA KRSNIK², ANDREAS MULCH², CHARLOTTE PRUD'HOMME³, WEIFU GUO⁴

¹Institute of Geosciences, Goethe University Frankfurt, Germany (Jens.Fiebig@em.uni-frankfurt.de)

²Senckenberg Biodiversity and Climate Research Center Frankfurt, Germany

³Max Planck Institute of Chemistry, Mainz, Germany ⁴Woods Hole Oceanographic Institution, USA

High-precision analysis of the excess abundance (relative to the stochastic distribution) of m/z 48 isotopologues in CO₂ evolved from acid digestion of carbonates (Δ_{48}) has recently not been possible due to the relatively low natural abundance of ¹⁸O. Here we show that the 253 PlusTM gas source mass spectrometer equipped with Faraday cups and $10^{13} \Omega$ resistors can perform combined Δ_{47} and Δ_{48} analyses on carbonates with external reproducibilities (1SD) of 0.010‰ and 0.030‰, respectively.

~10 mg aliquots of carbonates are digested with phosphoric acid at 90 °C using a common acid bath. The evolved CO₂ is purified using an automated gas preparation system (including cryotraps and GC) and analyzed for its Δ_{47} and Δ_{48} compositions using the dual inlet system of a 253 PlusTM gas source mass spectrometer. Raw Δ_{47} and Δ_{48} values are finally normalized to the Carbon Dioxide Equilibrium Scale (CDES).

 Δ_{48} values for carbonate reference materials Carrara and ETH 1 - 4 increase with Δ_{47} as is predicted if temperature was the major parameter controlling bond-ordering in these carbonates. However, rate-limiting kinetics involved in carbonate precipitation can significantly drag carbonate Δ_{47} and Δ_{48} away from corresponding equilibrium values [1]. Combined analysis of m/z 47 and 48 isotopologue abundances in CO₂ evolved from acid digestion of natural carbonates has an excellent potential for the determination of accurate carbonate formation temperatures and the identification of rate-limiting biomineralization reactions. As a consequence, paired (Δ_{47} and Δ_{48}) clumped isotope analysis fossil carbonates may allow to reconstruct of paleotemperatures independent of a kinetic bias.

[1] Guo, W. & Zhou, C. (2019). 7th International Clumped Isotope Workshop, Queen Mary, Long Beach, CA, USA.