Triple oxygen isotope composition of bioapatite

DINGSU FENG1*, THOMAS TÜTKEN², ANDREAS PACK¹

¹Georg-August-Universität, Abteilung Isotopengeologie, Geowissenschaftliches Zentrum, Goldschmidtstraße 1, 37077 Göttingen, Germany (*correspondence: dfeng@gwdg.de)

²Institut für Geowissenschaften, AG Angewandte und Analytische Paläontologie, Universität Mainz, J.-J.-Becherweg 21, 55128 Mainz, Germany

The reconstruction of paleo-atmospheric CO₂ levels by proxies is still on debate. The $\Delta'^{17}O$ of air O_2 varies with atmospheric CO₂ concentrations. Higher CO₂ concentrations result in lower Δ'^{17} O values of O₂, whereas lower CO₂ lead to a smaller ¹⁷O anomaly of air O₂. Pack et al. [1] proposed that bioapatite of terrestrial mammals can be used as proxy for the Δ '¹⁷O of ambient air and hence atmospheric CO₂ levels. Mammals breathe in O2 to metabolize carbohydrate, fat, and protein. The $\Delta'^{17}O$ anomaly of air O_2 is transferred to the reaction products CO2 and H2O. Both, CO2 and H2O equilibrate with body water, so that the anomaly is transferred from inhaled O2 to body water of mammals. Bioapatite crystallizes in isotopic equilibrium from body water. Because body water contains a fraction of anomalous O2 from respiration of air O₂, bioapatite should carry information on the isotope composition of air O_2 . The amount of oxygen from respired air O₂ can be estimated using a mass balance model [1].

We collected modern samples of bioapatite of marine vertebrates that crystallized at temperatures between 0°C and 37°C. For the sample preparation, the modern samples were treated with 2 ml H₂O₂ (30%) for more than 12 hours to remove the organic matter. Afterwards pretreated samples were heated to 1000°C to remove the carbonate fraction of the bioapatite [2]. The triple oxygen isotope measurements of the phosphate fraction of the bioapatite were conducted by laser fluorination using BrF₅.

We will present new data on the temperature dependence of the equilibration θ value between water and bioapatite.

[1] Pack et al. (2013) Geochimica et Cosmochimica Acta. **102**, 306-317. [2] Lindars et al. (2001) Geochim Cosmochim Acta **65**, 2535-2548.