Non-proportionality between anoxic CO₂ fluxes and soil organic carbon mass

CRISTIAN ESTOP-ARAGONÉS¹²*, LIAM HEFFERNAN², DAVID OLEFELDT²

¹Institute of Landscape Ecology, University of Münster, 48149 Münster, Germany (*correspondence: <u>cristian.estop@uni-muenster.de</u>)

²Dept. of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2H1, Canada

We designed a simple and robust experiment to determine if CO_2 (and CH_4) fluxes derived from soil heterotrophic respiration were proportional to soil organic carbon mass under oxic and anoxic conditions. Surface peat collected from a peatland underlained with permafrost was thoroughly homogeneized and used to fill columns (25cm inner diameter) 30, 50 and 100cm high with peat mass being proportional to column height.

CO₂ fluxes under oxic conditions measured during the first week were proportional to soil organic carbon mass (R^2 =0.98), as expected. Soil columns were then slowly filled with peat porewater and maintained water saturated with distilled water to provide for >200 days anoxic conditions. CO₂ fluxes measured under anoxic conditions (water saturated) for the entire experimental period were clearly not proportional to peat mass (R^2 =0.01).

This non-proportionality has strong implications for gas emissions modelling in waterlogged ecosystems since models typically assume the CO_2 flux to increase with soil depth due to incremental heterotrophic respiration upon addition of soil layers, an assumption we provide evidence against.

