
A new insight into the geochemical analysis of cold seeps in the South China Sea

Z.F. Du, X. Zhang*, Z.D. Luan, J. Yan

CAS Key Laboratory of Marine Geology and Environment, Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China (duzengfeng@qdio.ac.cn; *corresspondence: xzhang@qdio.ac.cn)

The Method

Based on the previously developed deep-ocean in situ Raman spectrometer with Raman insertion probes for cold seeps (RiP-Cs) [1], we conduct in situ detection for the geochemistry analysis of fluids in the chemosynthetic communities at the Formosa Ridge in the northern South China Sea (Figure 1).

Figure 1: The RiP-Cs probe is deployed to acquire the in situ Raman spectra of the fluids at different depth.

Discussion of Results

The in situ Raman spectra shows that concentration of SO_4^{2-} decreases with increasing depth, while the concentrations of CH_4 and S_8 increase in fluids, but without H_2S [2]. The findings provide a new insight into the geochemical analysis of the cold seeps.

Table 1: Concentrations of CH_4 , SO_4^{2-} and S_8 in fluids at different depths.

Depth (cm)	Concentration		
	CH ₄	SO ₄ ² -	S_8
	(mmol/L)	(mmol/L)	(Relatively)
0	0	29.67±0.41	0
10	6.36 ± 0.11	25.65 ± 0.07	1.18 ± 0.37
20	6.87 ± 0.33	25.05±0.11	11.80 ± 3.01
30	16.88 ± 0.33	18.86±0.41	6.47±0.52

[1] Zhang et al. (2017), Deep Sea Research Part I **57**, 297-306. [2] Du et al. (2018), G3 **19**, 2049-2061.