Eocene carbon cycling and climate interactions

*GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany,

*correspondence: eanagnostou@geomar.de

Cardiff University, UK
University of Southampton, UK
Open University, UK
University of Riverside, California, USA
Bristol University, UK

The Eocene (56-33.9 Ma) is the most recent greenhouse to icehouse transition in Earth’s history. Recently, it was demonstrated that atmospheric carbon dioxide (CO\textsubscript{2}) decline was likely responsible for driving the Eocene long-term cooling [1]. Here we utilise recent analytical and methodological developments to generate a record of surface seawater pH (pH\textsubscript{sw}) and CO\textsubscript{2} using the boron isotope composition of planktonic foraminifera from sites ODP 865, 1258, and IODP 342, generating the first continuous multi-site compilation of Eocene atmospheric CO\textsubscript{2} at an unprecedented temporal resolution (on average 1 sample per 200 kyr). These data agree with the previous sparse estimates of [1], but allow for a more thorough comparison between CO\textsubscript{2}, climate indices (e.g. benthic foraminifera carbon and oxygen records [e.g. 2,3]), and Li [4] and S [5] isotope compilations. These comparisons provide new insights into the links between weathering, volcanism, circulation, and organic carbon burial and their respective roles in driving Eocene CO\textsubscript{2} variations and climate. Furthermore, these data support the tight coupling between CO\textsubscript{2} and global temperature, while also revealing the evolving relationship between Equilibrium Climate sensitivity and background climate state.