Active ultra-high temperature metamorphism recorded in young lower crustal xenoliths, Rio Grande Rift, NM

J.H. CIPAR*, A.J. Smye, J.M. GARBER
Department of Geosciences, Pennsylvania State University,University Park, PA 16802, USA (*correspondence:jhc5220@psu.edu; smye@psu.edu, jxg1395@psu.edu)Profound questions remain concerning the mechanismsthat generate temperatures in excess of $900^{\circ} \mathrm{C}$ in the Earth'scontinental crust. Such conditions are important for thegeneration of large volumes of magmas and chemicaldifferentiation and stratification of the continents. Previouswork on the topic has focused on heat transfer in regions ofthickened crust; in contrast, the importance of extensionalenvironments for the formation of granulites has receivedlittle attention. Metapelitic xenoliths from Kilbourne Hole,New Mexico-a Pleistocene age maar-host abundant zirconand rutile. Here, we report that this rutile yields effectivelyzero-age $\mathrm{U}-\mathrm{Pb}$ dates and Zr concentrations up to $\sim 9000 \mathrm{ppm}$,consistent with (U)HT conditions ($960-1030^{\circ} \mathrm{C}$) [1] at thebase of the Rio Grande crust. Zircon U-Pb dates are as youngas $\sim 5 \mathrm{Ma}$ and are coupled to Ti-in-zircon temperatures of$800-950^{\circ} \mathrm{C}$. Laser Ablation Split Stream depth-profiling ofindividual zircon grains reveals a thermal history of RioGrande extension spanning $\sim 50 \mathrm{Myr}$. Heating of the lowercrust to $\sim 950^{\circ} \mathrm{C}$ occurred between 40 and 20 Ma followedby cooling to $\sim 850{ }^{\circ} \mathrm{C}$ from 20-8 Ma , and rapid reheating to$960^{\circ} \mathrm{C}$ by 7 Ma . These data, in conjunction with regionalheat flow measurements, seismic experiments, and theoccurrence of similar rocks $>1000 \mathrm{~km}$ to the south in the US-Mexico Basin and Range [2] suggest that (U)HTmetamorphism is currently active in the lower crust of the SWUSA and NW Mexico. Furthermore, RGR samplespotentially represent the youngest (U)HT rocks discovered to
date.
[1] Ferry, J. M. \& Watson, E.B. (2007) Contrib. to Mineral.
Petrol. 154, 429-437. [2] Hayob, J.L. et al. (1989) Nature
342, 189-92.

