Initial ⁸⁷Sr/⁸⁶Sr chronology of Allende fine-grained CAIs from step leaching experiments

B.L.A. CHARLIER *1 , F.L.H. TISSOT², N. DAUPHAS³, H. VOLLSTAEDT⁴ AND C.J.N. WILSON¹

¹SGEES, Victoria University of Wellington, 6140, New Zealand (*correspondence: bruce.charlier@vuw.ac.nz)

²The Isotoparium, Division of Geological and Planetary Science, Caltech, CA, USA

³Origins Lab, The University of Chicago, IL, USA ⁴Thermo Fisher Scientific, Bremen, Germany

An important application of the Rb-Sr chronometer lies in establishing the timing of volatile depletion in Solar System planetary materials [1, 2]. This requires that the initial Solar System ⁸⁷Sr/⁸⁶Sr ratio be precisely and accurately known, the determination of which has proven a challenging task. In theory, Calcium-Aluminum-rich Inclusions (CAIs), which are the oldest materials formed in the Solar System (~4.567 Ga), should provide a straightfoward means to assess the solar system ⁸⁷Sr/⁸⁶Sr initial. In practice, however, CAIs were subjected to variable degrees of alteration by fluids rich in Ca, alkalis, H₂O, CO₂, halogens and Fe, which can affect their Rb-Sr systematics.

To circumvent these complications, we conducted sequential step leaching experiments on nine fine-grained CAIs (i.e., non-molten, preserving their condensate textures) from Allende. To achieve high-precision on Sr load sizes as small as ~150 pg, sample analysis leveraged new developments in TIMS methods, particularly $10^{13} \Omega$ feedback resistors.

Leachate Rb-Sr data show great diversity. First leachates have high 87 Rb/ 86 Sr ratios (up to 3.8) and radiogenic 87 Sr/ 86 Sr (up to 0.94) and yield an age within error of 4.567 Ga. Samples from the fourth leach step have low 87 Rb/ 86 Sr (<0.04), low 87 Sr/ 86 Sr and yield a concordant age and precise initial 87 Sr/ 86 Sr=0.698784±76, in agreement with leach step 1 and the lowest published values [1]. Complete digestions of final residues scatter to higher 87 Sr/ 86 Sr, uncorrelated with 87 Rb/ 86 Sr, indicating a nucleosynthetic variability in the most refractory component(s). Results suggest that the timing of formation (e.g., leach 4) and alteration (e.g., leach 1) of Allende CAIs was within error of each other and the accepted 4.567 Ga figure. Final residues represent isotopically exotic components that contain unsupported radiogenic Sr, indicative of a possible independent pre-4.567 Ga history.

[1] Papanastassiou & Wasserburg (1978) *GRL*, **5**, 595–598. [2] Gray *et al.* (1973) *Icarus*, **20**, 213-239.