Oxygen isotope signature during phosphite oxidation by UV radiation: Prebiotic phosphate reservoir on early Earth

SAE JUNG CHANG^{1*} AND RUTH E. BLAKE²

 ¹ Seoul Center, Korea Basic Science Institute, Republic of Korea (*correspondence: sjchang15@kbsi.re.kr)
² Dept. of Geology and Geophysics, Yale University, USA

Recent discoveries have shown that phosphorus (P), not as phosphate (PO₄ with P⁵⁺) but as phosphite (PO₃ with P³⁺), could have been a major source of P for pre-biotic synthesis and major nutrient in early pre-oxygenated oceans [1]. These findings demand an evaluation of initial prebiotic oxygen isotope signatures of phosphate derived from phosphite as well as co-evolution of these prebiotic oxygen isotope signatures and life. However, oxygen isotope systematics of P redox chemistry remain poorly understood. In this study, we determined the ¹⁸O/¹⁶O ratio of dissolved phosphate (δ^{18} O_{PO4}) derived from oxidation of phosphite catalyzed by ultraviolet (UV) radiation, which was known to be relatively strong on early Earth due to lack of an ozone layer [2].

The UV-catalyzed oxidation of phosphite was conducted using ¹⁸O-labled phosphite and waters at pH 7 under air and under oxygen-free (Ar-filled atmosphere) conditions. Under UV (with a 1,200W mercury lamp) exposure, aqueous phosphite was (93-100%) oxidized to phosphate after 12 hours. The δ^{18} O values of product phosphates varied with the δ^{18} O values of ambient waters. Slopes of linear regressions of δ^{18} OPO4 vs. δ^{18} OH20 data were ~0.20, which indicated that ~20% of oxygen in product phosphate was derived from ambient water. No difference was observed in the $\delta^{18}O$ values of phosphate between air and Ar-filled conditions, which suggests that atmospheric oxygen (O2, CO2 etc.) was not directly incorporated into the product phosphate. These results suggest that the alternative phosphate sources derived from abiotic UV-catalyzed oxidation of phosphite would have oxygen isotope signatures that are distinct from that of igneous apatite. Furthermore, these results would help to interpret phosphate δ^{18} O biosignatures preserved in ancient terrestrial and extra-terrestrial samples, such as from Mars where surface UV radiation is high.

Herschy et al. (2018) Nature Communications 9, 1346.
Miller (1953) Science 117, 528.