The hydrothermal synthesis of alkali-carbonates: an hypothetical equivalent of the Ceres bright spots.

AZZURRA ZUCCHINI^{1*}, DANIELE MORGAVI¹, PAOLA STABILE², MICHAEL ROBERT CARROLL², PAOLA COMODI¹, FRANCESCO FRONDINI¹, DIEGO PERUGINI¹, MARCO CHERIN¹, ALESSANDRO MATURILLI³, MARIO D'AMORE³, JÖRN HELBERT³, GIULIA ALEMANNO³, MAXIMILIANO FASTELLI¹, FABIO ARZILLI⁴

¹ Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy (*correspondance: azzurra.zucchini@unipg.it)

² School of Science and Technology, Geology Division, University of Camerino, 62032 Camerino, Italy

³ Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Planetenforschung, Rutherfordstrasse 2, D-12489 Berlin

⁴ School of Earth and Environmental Sciences, University of Manchester, M139PL, Manchester, UK

Alkali carbonates have been related to different terrestrial and extra-terrestrial environments. The deconvolution of VIR spectra from Ceres showed the occurrence of Na-Ca carbonates on bright areas on its surface [1]. Moreover, alkali carbonates are intriguing mineral phases linked to the origin of alkaline carbonatite magmas [2]. Very poor data are known on Na-Ca carbonates since their paucity and ephemeral behavior [3]. The present project is aimed to (i) study the emissivity evolution of Na-Ca carbonates and (ii) investigate their crystal structure evolution at both ambient and extreme P-T conditions. Na-Ca carbonates were synthesized starting from a mixture of 60mole% of NaCO3 and 40mole% of CaCO₃ loaded into Au capsules (25 mm length, 3 mm inner diameter, 3.4 mm outer diameter) together with 10ml of distilled water [3]. The capsules after welding were placed in water-pressurized cold seal pressure vessels and treated at 550°C and 100MPa. Ten experiments were performed lasting from 1 to 2 weeks. A coling rate of 100°C/min was attained during the quench. The run products were analysed by means of XRPD and SC-XRD. Results showed that the main synthesized mineral phases were nyerereite Na₂Ca(CO₃)₂ (~80wt%) and thermonatrite Na₂CO₃·(H₂O). The nyerereite crystal structure was refined in the P21ca space group having a = 10.041(1) Å, b = 8.747(1) Å and c = 12.236(3) Å. The data we are collecting on the synthesized samples will give insights on both the interpretation of the Ceres's surface VIR spectra and the possible stability of alkali-bearing phases to the Earth's mantle.

[1] Palomba et al. (2019) Icarus, **320**, 202-212. [2] D'Orazio et al. (2007) Lithos, **98**, 313-334. [3] Gavryushkin et al. (2016) Cryst. Growth Des., **16**, 1893–1902.