Phase equilibria in the aqueous subsystems of Li-Rb-Cs-SO₄-H₂O

Y. ZENG^{1,2*}, S. FENG¹, P. XU¹, X. D. YU^{1,2}, Y. PENG¹

¹College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China; ²Collaborative Innovation Center of Panxi Strategic Mineral Resources Multi-Purpose Utilization, Chengdu 610059, P. R. China

(* correspondence: zengyster@163.com)

There are more than 700 salt lakes with an area larger than 1 km² in the Qinghai-Tibet Plateau. High concentrations of rare alkali metal ions (Li, Rb, and Cs) have been found in these salt lakes, in particular the salt lake in Qaidam Basin. Most of the salt lakes in the Qaidam Basin are of the sulfate-type. In sulfate type brine, lithium, rubidium, and cesium are easily formed into solid solution and double salt because of their similar ion radius, information on the aqueous solution composed of Li-Rb-Cs-SO₄ equilibria is of a particular importance for the purification of chemical produces, trace element geochemistry and element cycles.

Accordingly, the phase equilibria of three subsystems of Li⁺, Rb⁺, Cs⁺ // SO4²⁻ - H₂O at 298 K have been done by using isothermal dissolution method and Schreinemakers wet residues method. The stable phase diagrams of these three ternary system at 298 K belong to complex type with solid solution or double salt formed. In the systems Li-Rb(Cs)-SO₄-H₂O, there are three invariant points, four isothermal dissolution curves, and four crystallization zones corresponding to two single salts (Rb₂SO₄/Cs₂SO₄, Li2SO4·H2O) and two double salts (Li2SO4·Rb2SO4 and 3Li2SO4·Rb2SO4·2H2O) or (3Li2SO4·Cs2SO4·2H2O and Li₂SO₄·Cs₂SO₄). In the systems Rb-Cs-SO₄-H₂O, there are two invariant points, three isothermal dissolution curves, and three crystallization zones corresponding to two single salts (Rb₂SO₄ and Cs₂SO₄) and one solid solution [(Rb, Cs)₂SO₄]. The double salt and solid solution has the largest crystallization field almost occupies the entire phase region.

Acknowledgements

The authors acknowledge the support of National Natural Science Foundation of China (U1607121, 41473059) and Science and Technology Innovation Talent Program of Sichuan Province (19CXRC0043).