Martian core formation: Implications from the Hf–W system

MATTHEW C. BRENNAN1*, REBECCA A. FISCHER2, FRANCIS NIMMO2, AND DAVID P. O’BRIEN3

1Harvard University, Dept. of Earth and Planetary Sciences
2University of California Santa Cruz, Dept. of Earth and Planetary Sciences
3Planetary Science Institute
*Correspondence: mcbrennan@g.harvard.edu

The extinct hafnium–tungsten (Hf–W) radioisotopic system, which is sensitive to the timing and conditions of core formation, is a common geochemical proxy for determining the differentiation timescales of terrestrial bodies. Previous work has shown that Mars accreted and differentiated rapidly, perhaps within 1–3 Myr of solar system formation [1–2]. Many such studies rely on highly simplified core formation models, usually with a single metal segregation event at a fixed time. Accretion and core formation, however, are highly stochastic processes, so N-body simulations have also been used to explore the implications of Hf–W geochemistry for the dynamics of Martian formation [3–4].

In this study, we will couple additional sets of such simulations [5–6] with a more realistic model of Martian core formation [7] to self-consistently track the full bulk chemistry and Hf–W evolution of Mars, similar to our recent work for the Earth [8]. One significant advantage of this method is that we are able to include the evolution of D_W (the metal/silicate partition coefficient of W) as Mars accretes. The siderophile tendency of W decreases at high pressures, oxygen fugacities, and sulphur contents [9], all of which were present during Martian core formation, possibly altering the evolution of ε^{182}W.

Preliminary findings using homogenous accretion are consistent with previous suggestions that the geochemically-determined Martian Hf/W ratio and ε^{182}W arise because Martian core formation occurred early and with a relatively lower D_W compared to Earth [2]. The exact timescale implied by these parameters depends on the details such as the provenance of impactors and their degree of equilibration.