The isotopic mass dependence of respiratory O₂ consumption revisited and implications for primary productivity estimates

LAURENCE Y. YEUNG, 1,* JEANINE L. Ash, 1 Boda Li, 1 and Huanting $Hu^{1,2}$

 ¹Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005
²School of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, China

(*Correspondence: lyeung@rice.edu)

Molecular oxygen (O_2) acts as a terminal electron acceptor in the electron-transport chain. Its isotopic composition has been an indispensable tool for tracing primary productivity (PP) and carbon cycling in aquatic environments. The oxygen triple-isotope system, in particular (i.e., the ¹⁸O/¹⁶O and ¹⁷O/¹⁶O ratios in O₂), has provided many marine and global PP estimates [1].

One of the foundations of this approach is the use of a constant mass-dependent relationship for isotope fractionation during natural community respiration [2]. PP estimates are extremely sensitive to its precise value [1]. Historically, it has been determined empirically and rationalized by assuming the fractionation-controlling step is adiabatic [3]. Recent laboratory experiments [4] and analytical improvements [5], however, question the accuracy of the earlier data and imply that the conceptual understanding may also need revision.

We argue that electron transfer to O_2 , a diabatic process that "commits" heme-copper oxidases to catalysis [6], influences the isotopic mass dependence of respiratory O_2 consumption. Theory for outer-sphere electron transfer [7] predicts that it exhibits a unique mass dependence that deviates significantly from the canonical triple-oxygen relationship and also leads to enrichments in the proportions of ¹⁸O¹⁸O and ¹⁷O¹⁸O in O_2 . We present laboratory and field evidence for the importance of electron-transfer isotope effects in natural systems. If these inferences are correct, PP estimates will be affected.

Juranek & Quay Annu. Rev. Mar. Sci. 5 (2013) 503-524.
Luz & Barkan GCA 69 (2005) 1099-1110. [3] Young et al. GCA 66 (2002) 1095-1104. [4] Stolper et al. GCA 240 (2018) 152-172. [5] Yeung et al. RCMS 32 (2018) 1811-1821. [6] Verkholsky et al. Nature 380 (1996) 268-270. [7] Buhks et al. J. Phys. Chem. 85 (1981) 3763-3766.