Odinarchaeote-Tengchong illuminates the origination of eukaryotic endosomal system

Dingfeng Wu^{1, \$}, Lu Fan^{2, \$}, Jing Xiao¹, Yanbing Xu¹, Ruixin Zhu^{1, 2,*}, Chuanlun Zhang^{2,*}

¹ Putuo people's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R.China.(* <u>rxzhu@tongji.edu.cn</u>)

² Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, P.R.China.(* <u>zhangcl@sustech.edu.cn</u>)

\$ Equal contribution, * Corresponding authors.

Recent studies supported that eukaryotes originated in the archaeal Asgard superphylum, which is characterized by enriched eukaryotic-specific proteins. By far, few genomes of Asgard are available to firmly establish the exact phylogenetic positions of new Asgard archaeal lineages. In this study, we performed a large-scale analysis of unclassified archaeal genomes from public databases and identified a new family-level Asgard member named Odinarchaeote-Tengchong, which encodes all conserved components of endosomal sorting complexes required for transport (ESCRT), a feature distinguishable from all other prokaryotes. This finding sheds light on the origination of eukaryotic endosomal system and functional evolution of ESCRT-mediated protein degradation. ESCRTmediated protein degradation in Odinarchaeote-Tengchong may reflect its adaption towards hightemperature environments. Metabolic analysis indicates a mixotrophic lifestyle of Odinarchaeotewith nearly complete glycolysis Tengchong, pathway for degradation of carbohydrates and tetrahydromethanopterin Wood-Liungdahl pathway for reduction of CO₂. The discovery of a new Asgard archaeal group possessing the complete and conserved ESCRT machinery may illuminate the origination of eukarvotic endosomal system in a geothermal environment dominated by prokaryotes.