Evaporation of Fe(II)/Fe(III) sulfate brines under CO₂ and ultraviolet light: Implications for Mars

X.-Y. WANG^{1,2}, D.-S. ZHOU^{1,2}, Y.-Y. S. ZHAO^{1,3}*, D.-D LI⁴, X.-Y LI^{1,3}, S.-J. WANG¹

¹Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China (*<u>zhaoyuyan@mail.gyig.ac.cn</u>), ²University of Chinese Academy of Sciences, Beijing, 100049, China, ³Center for Excellence in Comparative Planetology, China, ⁴Qinghai Institute of Salt Lakes, Chinese Academey of Sciences, Xining, 810008, China

Fe(III)-sulfates were detected in the sedimentary records at Meridiani Planum and Gale Crater [1,2], and Fe^{2+}/Fe^{3+} redox is suggested to be critical controlling brine evolution and mineral assemblages on Mars, and may hold keys to the ancient climate and habitability of the red planet [e.g., 3,4].

We experimentally investigated Fe-sulfate brine evolution and final products during evaporation at 25°C. Five sulfate brines with varied oxidation states (molar $Fe^{2+}/Fe_T = 0$, 0.25, 0.5, 0.75, 1; Fe_T = 500 mM) and three irradiation/atmosphere combinations (i.e., ambient light/CO₂; UV_{254nm}/CO₂, UV_{254nm}/ Earth atmosphere) were systematically examined to identify possible influences on the final Fe assemblages.

Varied Fe²⁺/Fe³⁺ ratios of initial brine resulted in systematic changes in crystalline phases of final evaporites (ambient light/CO₂). The ferrous-only experiment precipitated melanterite (FeSO4·7H2O), and the ferric-only brine precipitated rhomboclase plus ferricopiapite $((H_5O_2)Fe(SO_4)_2 \cdot 2H_2O$ and Fe0.69Fe4(SO4)6(OH)2·20H2O respectively). In Fe^{2+}/Fe^{3+} mixing brines, rozenite (FeSO₄·4H₂O) was the major Fe²⁺ phase. Rhomboclase was the Fe³⁺ phase for Fe^{II}-25% and Fe^{II}-75% experiments, but amarantite (Fe₂(SO₄)₂O·7H₂O) was the Fe³⁺ phase for Fe^{II}-50% experiment. XRD analysis also showed presence of minor amorphous phases, enriched in O (or OH/H₂O) and depleted in S in general, likely resulted from Fe³⁺ hydrolysis.

Under UV irradiation and CO₂, ferric-only experiment produced solidified gel (other brines under UV with CO₂ or Earth atmosphere are ongoing). Such gel was XRDamorphous but SEM/TEM/EDS identified presence of nanosized ferricopiapite in the gel matrix. Plus, the gel matrix was equivalent to rhomboclase in composition. We will report comprehensive results and implications at the conference.

[1] Klingelhofer *et al.* (2004) *Science* **306**, 1740-1745. [2] Rampe *et al.* (2017) *EPSL* **471**, 172-185. [3] Hurowitz *et al.* (2017) *Science* 356 (6341). [4] Tosca *et al.* (2018) *Nat.Geoscience* 11(9).