Ca and Zn isotopic compositions of arc lavas from Tonga Rear Arc

XIA WANG1*, ZAICONG WANG1, JUNG-WOO PARK2, JONGUK KIM3, MING LI1, ZONGQI ZOU1

1 GPMR, School of Earth Sciences, China Univ. of Geosciences, Wuhan, China; *wangxia.1@outlook.com; 2 School of Earth and Environmental Sciences, Seoul National Univ., Seoul, South Korea; 3 Deep-Sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science and Technology, South Korea;

To investigate Ca and Zn isotopic variation during hydrous magma differentiation and evaluate the effects of subduction components, we measured Ca and Zn isotopic ratios of the well-characterized arc basalts and dacites from Niutahai–Motutahi caldera, Tonga rear arc [1]. These rocks show typical arc characteristics with enrichment of LILE and fluid-mobile elements and high oxygen fugacity [1], indicating a significant input of subduction components into the mantle wedge. The δ44/40Ca in basalts and fresh dacites varies from 0.76 ± 0.09‰ to 0.92 ± 0.09‰ with an average 0.84 ± 0.09‰ (n=12), while the δ66Zn varies from 0.22 ± 0.02‰ to 0.24 ± 0.04‰ with an average 0.23 ± 0.02‰ (n=12).

Both δ44/40Ca and δ66Zn show no correlation with geochemical indicators of magma fractionation (e.g., MgO, CaO, Al2O3, FeO) and addition of subduction components (e.g., Ba/La and Th/Nb). The results suggest negligible effects of hydrous magmatic differentiation and the input of subduction components on δ44/40Ca and δ66Zn. It may reflect that the subduction slabs bring little Ca and Zn into the mantle wedge and do not noticeably modify δ44/40Ca and δ66Zn of the mantle wedge. The data on altered samples suggest that hydrothermal alteration could strongly affect contents and isotopic compositions of Ca and Zn. The average δ44/40Ca of fresh arc lavas from Tonga is similar to MORB (0.81 ± 0.1‰) [2] and OIB (0.87 ± 0.1‰) [3], indicating similar behavior of Ca isotopes during mantle melting and magmatic differentiation under anhydrous and hydrous systems. The average δ66Zn is slightly lower than MORB (0.28 ± 0.03‰) [4] and OIB (0.30 ± 0.07‰) [5], which can be ascribed to a higher extent of mantle depletion relative to MORB source.