Quantifying rock-nitrogen export from a shale hillslope to floodplain in the East River watershed, Colorado

J. WAN¹*, T.K. TOKUNAGA¹, N.J. BOUSKILL¹, M.M. TFAILY³, W. BROWN², W. DONG¹, T. MAAVARA¹, A. HENDERSON², K.H. WILLIAMS¹, AND S.S. HUBBARD¹

- ¹Earth and Environment Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA (*correspondence: jwan@lbl.gov)
- ²Rocky Mountain Biological Laboratory, Crested Butte, Colorado, 81224, USA

³Department of Soil, Water and Environmental Science, University of Arizona, Tucson Arizona 85721, USA Subsurface rock-nitrogen (N) is unaccounted for in most models of N cycling, despite evidence of its return to Earth's surface. Most previous evidence comes from weathering and erosion on exposed surfaces. Weathering below the soil and its contributions to N cycling has been overlooked because direct measurements are rare and challenging. We conducted a study in the East River watershed, part of a much broader area underlain by Mancos Shale. Four deep boreholes were drilled into parent bedrock along a hillslope for sediment characterization and instrumentation for depth- and time-resolved hydrologic and pore water geochemical measurements over two years. We identified two rock-N release processes. One is the result of rock-organic matter (OM) weathering dissolution, and the other is cation exchange of rock-NH4⁺ being displaced by Ca²⁺ (also released by weathering). These processes occur primarily within the zone undergoing seasonal water table fluctuations, which we defined as the weathering zone. We also found that NO₃⁻ concentrations in the weathering zone pore waters are disproportionally high, resulting from nitrification of shale weathering-released N. Advected by seasonally varying water fluxes, the calculated rock-N exports to the floodplain exceed the predicted fluxes from atmospheric deposition. These findings are also supported by δ^{14} C-DOC ages, $\delta^{15}N/\delta^{18}O-NO_3^{-1}$ isotope compositions, and DOM compound classes and abundance (FTICR MS).