Thermodynamic properties of SiO_{2(aq)}, HSiO₃⁻ and SiO₃²⁻

C.S. WALKER^{1*}, S. ANRAKU², C. ODA², S. MITSUI², AND M. MIHARA²

 ¹QJ Science, Yokohama, Kanagawa 220-6008, Japan (*correspondence: walker.colin@jaea.go.jp)
² JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan (anraku.sohtaro@jaea.go.jp, oda.chie@jaea.go.jp, mitsui.seichiro@jaea.go.jp, mihara.morihiro@jaea.go.jp)

Equilibrium constants (*K*) describing the formation reactions of SiO_{2(aq)}, HSiO₃⁻ and SiO₃²⁻ can be used to derive their thermodynamic properties. However, Rimstidt [1] found SiO_{2(aq)} had been derived from inaccurate quartz solubility data, Sverjensky *et al.* [2] failed to extrapolate HSiO₃⁻ data to zero ionic strength and SiO₃²⁻ is routinely ignored because of its restricted dominance to very high pH > 13 solutions.

Using quartz and water as well known 'anchor' points, K values describing the formation reactions of SiO_{2(aq)}, HSiO₃⁻ and SiO₃²⁻ were revised to derive new thermodynamic properties and revised Helgeson-Kirkham-Flowers equation of state (r-H-K-F EoS) parameters (Table 1).

Property	SiO _{2(aq)}	HSiO ₃ -	SiO ₃ ^{2–}
$\Delta_{\rm f} G^0$ (cal/mol)	-199531	-242836	-224609
$\Delta_{\rm f} H^0$ (cal/mol)	-212510	-274200	-264000
S^0 (cal/mol/K)	9.972	4.000	-23.000
$a_1 \times 10$ (cal/mol/bar)	1.8942	2.8399	1.6651
$a_2 \times 10^{-2}$ (cal/mol)	10.7244	-0.8470	-3.7157
a3 (calK/mol/bar)	-2.0213	5.9002	7.2105
$a_4 \times 10^{-4}$ (calK/mol)	-3.2223	-2.7440	-2.6254
c_1 (cal/mol/K)	26.5268	29.3208	-1.7129
$c_2 \times 10^{-4}$ (calK/mol)	-14.6835	-17.8011	-17.2732
$\omega^{0} \times 10^{-5}$ (cal/mol)	0.1952	1.5608	3.5913

Table 1. Thermodynamic properties and r-H-K-F EoS parameters for $SiO_{2(aq)}$, $HSiO_{3}^{-}$ and SiO_{3}^{2-}

Values shown in Table 1 can be used in the derivation of the thermodynamic properties of other Si bearing complexes and minerals, and in calculating groundwater compositions relevant to the geological disposal of radioactive wastes.

This work was partly funded by the Ministry of Economy, Trade and Industry of Japan through the project "Advanced technology development for geological disposal of TRU waste" in JFY 2018.

[1] Rimstidt (1997) Geochim Cosmochim Acta **61**, 2553-2558. [2] Sverjensky *et al.* (1997) Geochim Cosmochim Acta **61**, 1359-1412.