Nd-Sr-Pb-O isotopes of Paleozoic alkaline intrusions from Kuznetsk Alatau Mountains, Siberia

V.V. VRUBLEVSKII¹, I.F. GERTNER¹

¹ Tomsk State University, Tomsk, 634050, Russia (vasvr@yandex.ru)

Paleozoic (~ 500, 400, 265 Ma) alkaline-mafic plutons form a small magmatic province in the Northern Kuznestk Alatau. The LILE and HFSE patterns of igneous rocks suggest an intrusion in a complex tectonic setting during interaction of mantle plume with accretionary-collisional complexes from the continental margin. In that case, magma had a multicomponent source consisted of depleted PREMA-type mantle mixed with enriched EM-type mantle and suprasubduction components. This source composition is consistent with the Nd–Sr isotope ratios of alkaline rocks: ~ 3 to 9 ε Nd(t); ~ 0.7042–0.7074 ⁸⁷Sr/⁸⁶Sr(t).

Participation of both depleted and EM 2 mantle is also confirmed by initial Pb isotope ratios in rocks and minerals (208 Pb/ 204 Pb 37.49–38.12; 207 Pb/ 204 Pb 15.53–15.71; 206 Pb/ 204 Pb 17.92–20.65). Meanwhile, correspondent increase in 87 Sr/ 86 Sr(t) and δ^{18} O_{V-SMOW} (6.3–15.5 ‰) values along with rock enrichment in 207 Pb indicate effects of crust contamination.

The study was supported by grants of Russian Government (no. 14.Y26.31.0012) and Ministry of Science and Higher Education of the Russian Federation (no. 5.8988.2017/6.7).