Circulation changes in the Amundsen Basin from 1991 to 2015 revealed from distributions of dissolved 230Th

O. Valk1, M M. Rutgers V. D. Loeff1, W. Geibert1, S. Gdaniec2,12, S. B. Moran3, K. Lepore4, R. L. Edwards5, Y. Lu6, V. Puigcorbé7, N. Casacuberta8,9, R. Paffrath10, W. Smethie11, M. Roy-Barman12

1Alfred Wegener Institute, 27570 Bremerhaven, Germany. (Ole.Valk@awi.de)
2Stockholm University, Department of Geological Sciences, 106 91, Stockholm, Sweden.
3College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
4Mount Holyoke College, South Hadley, MA 01075, USA.
5University of Minnesota, Minneapolis, MN 55455, USA.
6Nanyang Technological University, 639798, Singapore.
7Center for Marine Ecosystem Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
8Laboratory of Ion Beam Physics, ETH Zurich, 8092 Zurich, Switzerland.
10Marine Isotope Geochemistry, ICBM, University of Oldenburg, 26129, Oldenburg, Germany.
11Lamont-Doherty Earth Observatory, Palisades, NY 10964-8000, USA.

A time-series of dissolved 230Th from 1991 to 2015 enables identifying processes that control the temporal development of 230Th distributions in the Amundsen Basin. After 2007, 230Th concentrations decreased significantly over the entire water column, particularly between 300 m and 1500 m. This decrease is accompanied by a circulation change, indicated by an increase of salinity. Potentially increased inflow of water of Atlantic origin with low dissolved 230Th concentrations leads to the observed depletion in dissolved 230Th in the central Arctic. Since atmospheric tracers (CFC, 3He/4H) do not show increased ventilation rates, these interior waters must have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the Amundsen Basin. The 230Th depletion propagates downward in the water column by settling particles and reversible scavenging.