Tracing Injected CO₂ in the Olla Oil Field, Louisiana using Noble Gas Isotopes.

R.L. TYNE¹, P.H. BARRY², M. LAWSON³, C.J. BALLNETINE¹

¹Depart. of Earth Sci., University of Oxford, Oxford, UK. Rebecca.tyne@earth.ox.ac.uk

 ² Depart. of Marine Chem. and Geochem., Woods Hole Oceanographic Institution, Woods Hole, MA, USA
³ExxonMobil Exploration Company, Spring, TX, USA

The possible impacts of unintended CO₂ leakage into aquifers from primary storage reservoirs during or after geological carbon sequestration is of increasing concern. Groundwater monitoring could identify when CO₂ is leaking from the primary reservoir. However, one factor that is not well constrained is the amount of CO2 loss from the system or dissolution in to formation water. Understanding the amount of dissolution could also provide information on the efficiency of CO₂ flooding in the hydrocarbon industry. Noble gases are effective tracers for assessing subsurface fluid flow, and are unique in their ability to constrain fluid interactions in the subsurface. Noble gas isotope and bulk chemical composition data from the Olla oil field (n=7), Louisiana, which was CO₂ flooded during the mid-1980's, will be compared to the nearby Nebo-Hemphill oil field (n=7), which has never undergone any enhanced oil recovery and is considered pristine.

Although δ^{13} C of the injected CO₂ does not have a magmatic signature [1], we show that fluids from the Olla oil field have a high R/R_A, (1.7-2R/R_A) and ²⁰Ne/²²Ne (0.037-0.045) ratio indicating that the injected CO₂ has a magmatic source. This is also observed in the ¹³⁶Xe/¹³⁰Xe, ¹³⁴Xe/¹³⁰Xe, ¹³²Xe/¹³⁰Xe and ¹²⁹Xe/¹³⁰Xe isotopic ratios, which correlate with a magmatic CO₂ signature. In contrast, there is no evidence for a mantle component in the Nebo-Hemphill oil field. Therefore, we suggest that noble gases can be used to trace injection fluids, even if CO₂ itself has not been preserved.

In the Olla oil field, correlations of the $CO_2/^3$ He ratio to the ²⁰Ne and ⁴He concentrations show an order of magnitude loss of CO₂ with increasing contact and dissolution to groundwater. In contrast, the Nebo-Hemphill oil field does not show any relationship between $CO_2/^3$ He and ⁴He or ²⁰Ne and is homogenous in its noble gas composition, as well as in its major chemical constituents. Noble gas data will be used to investigate CO₂-water interactions and model loss of the injected CO₂ within the Olla reservoir system.

[1] Shelton et al., (2014) Applied Geochem., 51, 155-169.