The origin of ¹²CH₂D₂ depletions in microbialgenic methane gases

L. TAENZER¹, W. D. LEAVITT¹, J. LABIDI², E.D. YOUNG²

¹Department of Earth Sciences, Dartmouth College (lina.taenzer.GR@dartmouth.edu), ²Earth, Planetary, and Space Sciences, UCLA.

The abundances of "CH₂D₂ and "CH₂D relative to stochastic distributions of methane isotopologues are proving to be useful tracers of the provenance of methane gas. A striking feature of gases produced by microbial methanogenesis is the depletion in "CH₂D₂ of order 20 to 50 % relative to thermodynamic equilibrium or stochastic values [1,2]. The precise origin of this apparent signature of microbial methane production is relevant to its robustness as an indicator of microbialgenic CH₄ gas in general.

We investigated the $\Delta^{a}CH_{a}D_{a}$ and $\Delta^{a}CH_{a}D$ (‰ relative to stochastic) of CH_a gas produced by metabolic decomposition of methylphosphonate (CH_aO_aP) by a uqibuitous heterotroph, *Pseudomonas stutzeri*. The isotopic effects of the reaction can be regarded to first order as a simple bimolecular reaction between the medium H_aO and the CH_a-group from CH_aO_aP. The δD and $\delta^{a}C$ of the CH_a are known. By varying reactant water δD , we isolated the source of the $\Delta^{a}CH_{a}D_{a}$ isotope clumping effect.

Our results indicate that the great majority of the Δ^{12} CH₂D₂ signature of methane produced by P. stutzeri is the result of the difference in D/H between the water and reactant-CH₃. The match between predicted and measured isotopologue abundances is a clear indication that the "combinatorial" effect described previously [2-4] is the primary cause of the highly negative Δ^{12} CH₂D₂ values and invariant Δ^{13} CH₃D values for the CH₄ produced by *P. stutzeri* in these incubations. For example, with water $\delta D = -64\%$ (VSMOW) and $\delta^{13}C \delta^{13}C$ of CH₃O₃P = -100% (VPDB), the combinatorial effect predictions (and measured values) for methane δD , $\Delta^{{}_{12}}CH_{{}_{2}}D$ and $\Delta^{{}_{22}}CH_{{}_{2}}D_{{}_{2}}$ are -304‰ (-308‰), -0.33‰ (1.3‰) and -41.8‰ (-42.9‰), respectively. For water with $\delta D = 1500 \%$ the predicted (measured) δD , $\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$ values for methane are -191.5% (-192.4%), -0.6% (0.4%), and -2.0% (0.3%), respectively. The $\delta^{13}C$ is ~ -100% in all cases. Similar results for a wide variety of water D/H measurements illustrates the dominance of the combinatorial effect.

Any reaction involving hydrogen from reservoirs with disparate D/H ratios could in principle cause similarly low Δ^{12} CH₂D₂ values.

[1] Young et al. (2017) *GCA* 203; [2] Yeung et al. (2015) *Science* 348; [3] Yeung (2016) *GCA* 172; [4] Röckmann et al. (2016) *Scientific Reports*.