Bend Me, Shape Me, Molybdenite: Spokes on the Crustal Re-Os Wheel

HOLLY J. STEIN 1,2

 AIRIE Program, Colorado State University, Fort Collins, Colorado, 80523-1482 USA (holly.stein@colostate.edu)
Geosciences, University of Oslo, 0317 Oslo, Norway

Re-Os first became a serious contender as a robust radiometric clock through molybdenite dating. In the last 20 years, we have put many new spokes on the Re-Os bicycle. Novel sampling strategies have been instrumental in recovery of the unifying fourth dimension, and our singular correlation tool in geoscience – TIME.

The first dating of molybdenite was soon followed by the discovery of parent-daughter decoupling^[1,2], and the need for a double Os spike^[3]. Molybdenite, the new zircon, holds its clock through high P-T conditions and deformation. This little-noticed metamorphic mineral, whose pliability reveals textural development, places precise time pins in complex tectonic histories. Arsenopyrite followed, a revolution for tracking timing of Au metallogenesis. Re-Os dating of pyrite gave us the first radiometric age for the timing of the rise of atmospheric oxygen^[4]. And, Re-Os was the first to show that temperature, acidity, and anoxia – a choir of three unveiled by a single tool – conspired to kill in the marine environment at the end of the Permian^[5].

From sulfides, organic matter - a gunky repository for metals - was the next target. Extraction of hydrogeneous organic matter from shales to acquire depositional ages opened Re-Os for work on the Geologic Time Scale^[6,7]. Once it was shown that Re and Os are concentrated in the asphaltene fraction of hydrocarbons[8], meaningful ages for oil and bitumen, non-crystalline substances wandering the crust at low T, became possible. The challenge of dating oils, however, required some serious strategizing. The first Re-Os dating of a single crude oil was achieved by dismantling the oil into its asphaltene-maltene components with the crude oil holding center position on the isochron^[9]. Oil-water mixing experiments confirmed integrity of the Re-Os clock and allowed recognition of a mixing history^[10]. Reconstruction of entire petroleum systems in absolute time followed, as we date undermature and mature source rock, early (heavy) oil charges, oil-oil-water mixing and tar mat formation, arrival of later oil charges, and oil extracted from the well head^[11].

^[1]Stein et al 2001 ^[2]Stein et al 2003 ^[3]Markey et al 2003 ^[4]Hannah et al 2003 ^[5]Georgiev et al 2011 ^[6]Ravizza & Turekian 1989 ^[7]Creaser et al 2002 ^[8]Selby & Creaser 2004 ^[9]Georgiev et al 2016 ^[10]Hurtig et al 2019 ^[11]Georgiev et al 2019. Supported by the Norwegian petroleum industry and the US-NSF. CSU provides no financial support for AIRIE's personnel or operations.