The oxidation state of iron in peridotite liquids and implications for planetary magma oceans

PAOLO A. SOSSI^{1,2*}, ANTONY D. BURNHAM³, JAMES BADRO¹, ANTONIO LANZIROTTI⁴, MATT NEWVILLE⁴, HUGH ST.C. O'NEILL³

¹Institut de Physique du Globe de Paris, Paris, France

- ²Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
- ³Research School of Earth Sciences, Australian National University, Canberra, Australia
- ⁴ Center for Advanced Radiation Sources, University of Chicago, Chicago, USA
- * email address: paolo.sossi@erdw.ethz.ch

Our knowledge of the relationship between oxygen fugacity (fO_2) and the redox state of iron dissolved in silicate melts comes almost exclusively from investigations of basaltic melts [1 - 3]. Although instructive for understanding mafic magmatism, the mantles of telluric bodies in the inner solar system are broadly peridotitic, not basaltic, in composition [4]. Because the valence of iron may be shifted not only by oxygen fugacity, but also by melt composition [5], understanding the mantle redox states of such bodies necessitates experimental investigation of peridotitic liquids.

In order to wholly fuse peridotite, powders of a synthetic fertile lherzolite composition based on KLB-1 were heated using a gas-mixing aerodynamic levitation furnace to 1900 °C for 30 s under varying Ar+CO₂-H₂ gas mixtures and pure O₂, yielding log/O₂s between 0 and -8. Here, we report Fe³⁺/Fe²⁺ ratios in the quenched glasses calculated from Fe K-edge XANES spectra collected at the 13-IDE (GSECARS) beamline at APS, Chicago, Illinois.

Calculated Fe³⁺/ Σ Fe ratios ranged from 0.01 at log/O₂ = -8 to 0.47 at log/O₂ = 0. Dependence of Fe³⁺/Fe²⁺ on log/O₂ conforms to a slope within uncertainty of the ideal value (0.25) and the resultant equilibrium constant for the reaction Fe²⁺O(1) + $\frac{1}{4}$ O₂ = Fe³⁺O_{1.5}(1) is close to unity, indicative of ideal dissolution of both species in peridotite melt. Based on estimates for the FeO contents of planetary mantles [4], bodies in equilibrium with core-forming metal at low pressures should contain 1 – 2 % Fe³⁺ in their mantles. The 3.6 % present in Earth's mantle argues that it underwent additional and/or distinct processes during its accretion.

Kress, V.C., & Carmichael, I.S.E. (1991), CMP, 108,
82-92 [2] Cottrell, E. et al. (2009), Chem. Geol. 268, 167 [3] Berry, A. J. et al. (2018) EPSL, 483, 114-123 [4]
Wanke, H. & Dreibus, G., (1988), Phil. Trans. R.Soc. A., 325,
545-557 [5] Borisov, A.A. et al. (2017), CMP, 172, 34