Carbonyl as a possible carrier of platinum in magmatic fluids

SIMAKIN A.^{1,2}, SALOVA T.², TUTUNNIK O.³, ISAENKO S.⁴, POKROVSKI G.S.⁵, BORISOVA A.Y.⁵

CO forms the most stable compounds with π bonding (stronger than C₂H₄, C₂H₂ and others) with native PGE and some cations including Au⁺. We find experimentally that pressure of 50-200 MPa stabilizes platinum carbonyls to the magmatic temperatures of 800-950°C [1]. We performed an experimental study of Pt solubility in CO-bearing fluids at 800-950°C and 0.5-2.0 kbar, using a double capsule technique for fluid generation by the thermal decomposition of MgC₂O₄, with the fluid trapped in porous welded silica glass and Al₂O₃ ceramics. Bulk Pt content was measured with electrothermal atomic absorption spectrometry (ETAAS) and LA-ICP-MS. We obtain the first estimates of solubility in CO-CO₂ fluid at fO₂ near CCO buffer that is no less than 600 ppm at P=200 MPa and T=950°C. Using of albite glass as a trap allows capturing of the reactive fluid and dissolved carbonyls in the bubbles. Raman spectroscopy of quenching phases in the bubble formed at P=100 MPa and T=950°C confirms formation of polynuclear carbonyl. Carbonyl of Pt absorbed on carbon was also identified. The pressure dependence of Pt solubility at 950°C between 0.5 and 2 kbar is consistent with the formation of Pt3(CO)₆ or Pt3(CO)₆²⁻ (Chini complex) Raman spectroscopy data support this interpretation. LA-ICP-MS analysis demonstrated that iron is transferred by fluid along with Pt. Iron carbonyl is unstable at these PT conditions and neutral complex composed of Fe²⁺ and Pt₃(CO)₆²- can be responsible for the observed Fe transfer and formation of Pt₃Fe. Significant Pt solubility is expected at near solidus temperatures of the upper crustal (P=200-300 MPa) ultramafic-mafic intrusions hosting the largest PGE deposits. Solubility of Pt in the fluid at fO2 near CCO buffer (graphitized rocks) is predicted to be strongly dependent on temperature and at P=500 MPa it will reach hundreds ppm level at the temperatures above 600-700°C (amphibolite facies metamorphism).

Study was supported with RFBR grant #18-05-00597.

1. Simakin A.G., Salova T.P., Gabitov R.I., Isaenko S.I. (2016) Geofluids,16, 1043-1067.

¹Institute Physics Earth, Moscow, Russia, simakin@ifz.ru

²Institute Experim. Mineral. RAS, Chernogolovka, Russia

³ GEOKHI RAS, Moscow, Russia

³ Institute of Geology RAS, Syktyvkar, Russia.

⁵ GET, CNRS, Toulouse, France