Ion filtration in oceanic clay-rich sediments: evidence from chlorine stable isotopes of pore fluid chlorides

Agrinier P.¹, Destrigneville C.², Giunta T.³, Bonifacie M.⁴, Bardoux G.⁵, Lucazeau F.⁶ & Ader M.⁷

¹IPGP, Paris France, <u>agrinier@ipgp.fr</u>.
²GET, Univ. Toulouse, Toulouse. <u>cdestri@lmtg.obs-mip.fr</u>.
³UBO, Univ. Brest, Brest. <u>Thomas.Giunta@univ-brest.fr</u>.
⁴IPGP, Paris France, <u>bonifaci@ipgp.fr</u>.
⁶IPGP, Paris France, <u>lucazeau@ipgp.fr</u>.
⁷IPGP, Paris France, <u>ader@ipgp.fr</u>.

Pore fluids from young clay-rich sedimentary piles (Nankai Though and Japan trench accretion prisms, Black Ridge and Juan de Fuca Ridge flanks; data from ref. 1-6) systematically show a regular decrease of δ^{37} Cl of chlorides with depth from about 0‰ (seawater value) at the seafloor down to -8.5 ‰ at the most, in very low permeability sedimentary levels. However, deviations towards higher δ^{37} Cl values are observed locally. They are resulting from injection of external fluids at higher permeability sedimentary levels.

Using conservation equations for chlorides and water, these δ^{37} Cl profiles can be modelled by the compaction of a growing clay-rich sedimentary pile. Isotope fractionations of chlorine isotopes, $\alpha^{37Cl/35Cl}_{expulsed/residual fluid}$, in the range of 1.006 to 1.001, explain the observed negative δ^{37} Cl chlorides at the bottom of the sedimentary piles. They are in agreement with the of ion filtration theory of [7] in which the mobility of chlorides through semi-permeable clay membranes is determined by ion repulsion. The complementary positive δ^{37} Cl chlorides must accumulate at the top, but are very likely masked by dilution with seawater chlorides accross the seafloor interface. As a result, young clay-rich sediments blanketing oceanic crusts are reservoirs of ³⁷Cl-depleted chloride. The fact that no such ³⁷Cl-depleted chlorine is documented in subduction zone products is therefore a strong argument to propose that most of the clay-rich sediments pore fluids are released back to the ocean rather than being subducted.

References: [1] Agrinier et al. 2019, Geochi. Cosmo. Acta, 245, 525; [2] Bonifacie et al., 2007 Earth Planet. Sci. Lett. 260, 10; [3] Deyhle et al., 2003 The Island Arc,13, 258; [4] Hesse et al., Geofluids, 6, 1; [5] Spivack et al., 2002, Geophysical Res Letters, 29, 1661; [6] Wei et al., 2008, Earth Planet. Sci. Lett, 266, 90. [7] Phillips and Bentley 1987, Geochi. Cosmo. Acta, 51, 683;