The influence of microbial sulfate reduction on the $\delta^{34}S_{\text{CAS}}$ composition in modern Mg-rich carbonates

S.L. SCHURR1*, V. FICHTNER1,2, H. STRAUSS1, A. IMMENHAUSER3, C. VASCONCELOS4, S. HÄNSCH1, V. HEßELER1, C. AREIAS DE OLIVEIRA5 AND C. FERNANDES-BARBOSA5

1Institut für Geologie und Paläontologie, Westfälische-Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany (*correspondence: schurr@wwu.de).
2Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA.
3Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
4Geological Institute, ETH-Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland.
5Departamento de Geoquímica, Universidade Federal Fluminense, RJ-24020-141 Niterói, Brazil.

Dolomite is an important carbonate archive throughout Earth’s history that allows to reconstruct the global marine sulphur cycle through the $\delta^{34}S$ value of carbonate associated sulphate (CAS) and pyrite (py). However, studies of both proxies in environments characterized by modern dolomite precipitation are limited. Here we present $\delta^{34}S$ data for CAS and pyrite from dolomite-rich sediments of two hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) in Brazil. Results are compared to the sulphur isotopic composition of sulphate of the surface water.

In Lagoa Vermelha $\delta^{34}S_{\text{py}}$ values of sedimentary pyrite show a variation from -13 to -5‰. $\delta^{34}S_{\text{CAS}}$ values at 28‰ for carbonate sediment are isotopically heavier than the respective surface water with 20.5‰. The carbonates of Brejo do Espinho display increasing $\delta^{34}S_{\text{CAS}}$ values from 24‰ at the surface to 43‰ at 0.4m depth. There the $\delta^{34}S_{\text{SO}_4^{2-}}$ value of surface water lies at 23‰ and the $\delta^{34}S_{\text{py}}$ show an average value of -12‰.

Both, $\delta^{34}S_{\text{CAS}}$ and $\delta^{34}S_{\text{py}}$ values indicate a strong influence of microbial sulphate reduction during dolomite precipitation, which has implications for the reliably of a primary marine $\delta^{34}S_{\text{CAS}}$ proxy signal in ancient dolomites.