Tokyo 152-8550, Japan.

Constrains on the origin of fluid trapped in hydrothermal quartz from 2.4 Ga Ongeluk Fm., South Africa

TAKUYA SAITO¹, HUA-NING QIU², TAKAZO SHIBUYA¹, TSUYOSHI KOMIYA³, SHIGENORI MARUYAMA⁴

 ¹D-SUGAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan. (*corresponding author: sai-tak@jamstec.go.jp)
²Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences Wuhan), Ministry of Education, Wuhan 430074, People's Republic of China.
³Department of Earth Science and Astronomy, The University of Tokyo, Tokyo 153-8902, Japan.
⁴Earth-Life Science Institute, Tokyo Institute of Technology,

Fluid inclusions in hydrothermal quartz formed by seafloor hydrothermal alteration are considered as useful samples to reveal compositions of ancient seawater and atmosphere (e.g., [1]). The fluid inclusions in the 2.4 Ga Ongeluk Formation, South Africa, are expected to still retain seawater during the Paleoproterozoic Snowball Earth Event [2]. However, origin of the trapped fluids is still controversial due to insufficient geochemical constraints. Thus, to constrain the origin of fluids, we carried out Ar isotope analysis of the fluid inclusions in quartz samples via a stepwise crushing method after neutron irradiation [3].

Argon isotopes of the fluid inclusions in the quartz samples suggest that the fluid inclusions comprise three endmembers: 1) ⁴⁰Ar- and ³⁹Ar_K-rich type (neutron-induced ³⁹Ar from K), 2) ⁴⁰Ar- and ³⁸Arcı-rich type (neutron-induced ³⁸Ar from Cl) and 3) atmospheric-Ar-rich type, on 3D 40 Ar/ 36 Ar- 39 Ar_K / 36 Ar- 38 Ar_{Cl}/ 36 Ar space. The highest 40 Ar/ 36 Ar value of 4153 (4086 at 2.4 Ga) in the fluid inclusions is consistent with an expected value of the Ongeluk plume source (40 Ar/ 36 Ar = ca. 4000) [4]. The obtained 40 Ar contents is well correlated with the ³⁸Arcı contents, suggesting that the ⁴⁰Ar is derived from excess ⁴⁰Ar (⁴⁰Ar_E) [5]. The lowest ⁴⁰Ar/³⁶Ar value at 0 of ³⁸Ar_{Cl}/³⁶Ar value (i.e., ⁴⁰Ar/³⁶Ar value subtracted by radiogenic ⁴⁰Ar and ⁴⁰Ar_E) on ⁴⁰Ar/³⁶Ar vs. 38 Ar_{Cl}/ 36 Ar diagram is 307 ± 16 (2 σ), which is similar to modern atmospheric ⁴⁰Ar/³⁶Ar value of 296. Those results support that the fluid inclusions were trapped from the seawater during the Ongeluk volcanism; thus retain the information of the ancient Ongeluk seawater.

[1] Nishizawa et al. (2007) *EPSL*. [2] Saito et al. (2016) *Precam. Res.* [3] Qiu and Wijbrans. (2008) *EPSL*. [4] Davies, GF. (2010) *G-Cubed*. [5] Kelley et al. (1986) *EPSL*.