The Pleiades volcanic complex in the W Antarctic rift: basaltic magmas differentiation affected by ice cover during the last glacial maximum

<u>SAMUELE AGOSTINI¹, NOEMI LEONE², GIANFRANCO DI</u> <u>VINCENZO¹, SERGIO ROCCHI², JOHN L. SMELLIE³</u>

¹Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy – s.agostini@igg.cnr.it, g.divincenzo@igg.cnr.it
²Dipartimento di Scienze della Terra, Università di Pisa, Italy noemigeologia@libero.it, rocchi@dst.unipi.it
³Department of Geology, University of Leicester, UK -

jls55@leicester.ac.uk

The Pleiades volcanic complex, northern Victoria Land, Antarctica, is made up of ~20 small cones erupting hawaiite to trachyte products, defining a complete Naalkaline differentiation trend, without any Daly Gap. Mafic samples are characterized by Ta-Nb enrichments, low ⁸⁷Sr/⁸⁶Sr (~0.7037) and high ¹⁴³Nd/¹⁴⁴Nd (~0.51284) ratios, suggesting a within-plate affinity and derivation from a sub-lithospheric mantle source. ⁸⁷Sr/⁸⁶Sr increasing and ¹⁴³Nd/¹⁴⁴Nd decreasing with respect to SiO₂ indicate a significant amount of crustal assimilation along with fractional crystallization.

Erupted products are ~70 km³ in volume. However, fractionation models point out that the volume of primitive magma may be some 40 times larger, suggesting an unusually large magma plumbing system. The ⁴⁰Ar-³⁹Ar ages (30.3 ± 4.5 and 24.7 ± 1.8 ka), show that Pleiades were active during the last glacial maximum, when the ice sheet may have been much thicker. A thick mantling ice cover would be capable of suppressing eruptions and lead to a high magma residence time in depth, favoring extensive fractionation and high rates of crustal assimilation.