Degradation of Cu-bearing uranyl As-P micromineral phases from Krunkelbach uranium deposit, Southern Germany

I. PIDCHENKO^{1,2*}, S. BAUTERNS^{1,2}, L. AMIDANI^{1,2}, K.O. KVASHNINA^{1,2}

¹The Rossendorf Beamline at ESRF, CS40220, 38043 Grenoble Cedex 9, France. <u>stephen.bauters@esrf.fr</u>, <u>lucia.amidani@esrf.fr</u>, <u>kristina.kvashnina@esrf.fr</u>

²Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, 01328 Dresden, Germany. (*correspondence: <u>i.pidchenko@hzdr.de</u>)

The abandoned Krunkelbach uranium (U) mine, Southern Germany, with 2-3 km surrounding area represents a unique natural analogue site with accumulation of U minerals suitable for investigations of potential mobilizationimmobilization processes expected in a real spent nuclear fuel repository. A specific feature of the site is the occurrence of more than forty secondary U minerals, from mixed redox U oxy-hydroxides to alkaline metal uranyl silicates, thus representing a wide scale of U ore weathering events. In this work the combination of synchrotron and laboratory techniques is used to unveil U speciation and micro heterogeneities in U phases accumulated on granitic rock outcrop from U deposit area. Available data on the age of the secondary U mineralization indicates that oxidizing processes at the site started some 340,000 years ago and continues up to date. Several phases close to Cu(UO₂)₂(PO₄)_{2-x}(AsO₄)_x·8H₂O are identified on $1 \times 2 \text{ mm}^2$ area with presumably older, more evenly distributed Cu(UO₂)₂(SiO₃OH)₂·6H₂O and (Fe, Ba, Pb)(UO₂)₂(WO₄) (OH)₄·12H₂O, mineralization. Based on a multi-technique investigation 10-200 µm Cu(UO₂)₂(PO₄)₂₋ x(AsO₄)x·8H₂O particles with widely varying As-P content are analyzed. The evidences of a degradation occurred on some zones on the selected crystals are found associated with higher As and decreased P content. This observation can be apparently attributed to different degradation properties of the mixed As-P phases depending on As-P ratio and originate from different solubility properties of Cu(UO₂)₂(PO₄)₂·8H₂O and Cu(UO₂)₂(AsO₄)₂·8H₂O species. The conditions for preferential formation of As rich Cu(UO₂)₂(XO₄)₂·8H₂O [X=As, P] phases and its possible role on U transport in environment under oxidizing conditions are discussed.