$\delta^{234}U_o$ in stalagmites as a proxy of paleohydrological conditions, a LA-MC-ICP-MS study

J.P. Bernal, ¹ FW. Cruz, ²M. Lachniet ³ C, Spötl ⁴ M. Deininger ⁵ J.A. Martínez-Paredes ¹

¹Centro de Geociencias, UNAM, México jpbernal@unam.mx ²Instituto de Geociencias, USP, Brazil, cbill@usp.br

³Department of Geoscience, UNLV, USA,

Matthew.Lachniet@unlv.edu

⁴Institute of Geology, University of Innsbruck, Austria, christoph.spoetl@uibk.ac.at

⁵Institute of Geosciencies, Johannes Gutenberg University Mainz, Germany, michael.deininger@uni-mainz.de

The δ^{234} U composition of stalagmites is usually a "by-product" of U-Th dating, and its variability is rarely interpreted. However, it has long been suggested that the δ^{234} U composition reflects water-rock interactions and weathering, and thus, can be used as a potential proxy of past hydrological conditions, e.g. in karst systems. However, only few reports have used δ^{234} U_o for this purpose.

Here, high-resolution records of $\delta^{234}U_o$ in stalagmites obtained using LA-MC-ICP-MS from three different locations and environments (tropical, subtropical and alpine) are used to assess the robustness of this potential paleohydrological proxy . These records are compared to trace-element, $\delta^{18}O$ and $\delta^{13}C$ records from the same stalagmites that provide some constrains on the controls of the $\delta^{234}U$.

The $\delta^{234}U$ values in these samples appear to reflect the weathering rate of the limestone hosting the cave. Locally, . In general, the records reflect the overall climate evolution, and locally seasonal $\delta^{234}U_{\circ}$ cycles were also detected.. Because the results presented here have been obtained from significantly different environments (tropcial, subtropical and alpine), we suggest that $\delta^{234}U_{\circ}$ in stalagmites has the potential to become a proxy of past hydrological conditions.