Trace elements and REE geochemistry of Late Jurassic-Early Cretaceous Platform Carbonates, Ayralaksa Area (Trabzon, NE Turkey): Implications for diagenetic processes

M. ÖZYURT¹, M. Z. KIRMACI¹, R. KANDEMIR²

¹Department of Geological Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey merveyildiz@ktu.edu.tr

²Department of Geological Engineering, Recep Tayyip Erdoğan University, 53100, Rize, Turkey

Large-scale, massive dolomite bodies are well preserved in the Eastern Pontides (northeast Turkey), which is known as one of the best examples of the metallogenic provinces on the Alpine-Himalavan belt. These dolomite bodies are hosted in the Upper Jurassic - Lower Cretaceous Berdiga Formation, which is composed of platform carbonates. The Berdiga Formation in Ayralaksa area (Trabzon, NE Turkey) is pervasively dolomitized by fabric-destructive and fabricpreserving replacive dolomites (RD). These dolomites are Carich and non-stoichiometric (Ca₅₆₋₆₆-Mg₃₄₋₄₄) and have low $\delta18O$ (-19.01 to -4.20% V-PDB) and $\delta13C$ (2.11 to 4.40 %V-PDB) values, radiogenic 87Sr/86Sr ratios (0,70745-0,70636). All dolomite samples have low Y/Ho (20-45) and Sm/Nd (0.1-0.3) ratios and they contain highly variable contents of rare earth elements (REE+Y) (1.9-15.8). REE patterns of dolomites normalized to Post-Archean Australian shale generally show a distinct positive Eu (1.3-2.1), negative Ce (0.5-1.1) and slightly flattened Pr (0.8-1.1) anomalies. The distinct REE features of the dolomites are mainly attributed to complex diagenetic alterations (dolomitization and recrystallization) occurring at shallow to deep burial stage.

Acknowledgments

The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK-ÇAYDAG, Project no: 115Y005 and International Ph.D. Research Scholarship Program-2214-A-BIDEP) for their financial support.