Determination of ²⁸U in environmental samples by triple quadrupole ICP-MS

TAKESHI OHNO¹ AND JUNKO SHIKIMORI¹

 Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo, Japan, 171-8588, takeshi.ohno@gakushuin.ac.jp

The anthropogenic uranium isotope ${}^{28}U$ (half-life: 2.34×10⁵ y) is one of the most important environmental tracers. Uranium-236 is produced by the nuclear reaction of ${}^{28}U$ with thermal neutrons in reactors. It is found in spent nuclear fuel and the reprocessed uranium made from spent nuclear fuel. Therefore, ${}^{28}U$ can be used as a tracer to investigate the distribution of anthropogenic uranium.

Advances in inductively coupled plasma quadrupole mass spectrometry with a reaction cell have enabled us to determine trace elements in a number of environmental matrices. The measurement of ²⁶⁴U by ICP-MS is very difficult due to a high background noise caused by ²⁶⁵UH. Recently, a triple quadrupole ICP-MS (ICP-MS/MS) can be available to measure ²⁶⁶U/²⁶⁶U. The ²⁶⁶UH signal was reduced by using O₂ as a reaction gas to improve the precision and accuracy of the ²⁶⁶U/²⁶⁶U isotopic ratio measurements (Tanimizu et al., 2013). This analytical approach has the potential to provide a more sensitive and robust technique for the quantitative analysis of ultra-trace ²⁶⁶U in the environmental samples.

In this study, we examined the applicability of the method to determine ²⁶U in a sediment core sample collected in Tokyo Bay. An ICP-MS/MS (Agilent 8800, Agilent Technologies) with a desolvating nebulizer (Aridus II, Cetac Technologies) was used for the measurement of ²⁶U/²⁶U ratios. The sediment core samples were dissolved by a mixture of acids, and the matrix elements were removed by a separation technique using UTEVA resin. The measured ratios were corrected by normalizing the ²⁶U/²⁶U ratio of XSTC-829 to 2.2×10³.

The sources of anthropogenic uranium in Tokyo Bay were investigated on the basis of ²¹⁶U/²¹⁰U ratio in the sediment core. The ²¹⁶U/²¹⁶U ratios in the core increased from 1970. Moreover, The ²¹⁶U/²¹⁶U ratios in the sediment core in the 1980s in Tokyo Bay were still high. This result suggests that the main source of anthropogenic uranium in Tokyo Bay might not be the global fallout in the 1960s. In this presentation, we would like to discuss the possible sources of the anthropogenic uranium in Tokyo Bay.