The sulfate capacity of silicate melts at atmospheric pressure

HUGH O'NEILL1* AND JOHN MAVROGENES1

 ¹Research School of Earth Sciences, The Australian National University, Canberra 2601, Australia
^{*}hugh.oneill@anu.edu.au

Sulfur dissolves in silicate melts at atmospheric pressure and low oxygen fugacities (fO₂) as sulfide (S²⁻), but as sulfate (S⁶⁺ or SO₄²⁻) at higher fO₂ (e.g., [1]). The solubility of S²⁻ in silicate melts is described by the reaction ¹/₂ S₂ + O²⁻(melt) = ¹/₂ O₂ + S²⁻(melt), leading to the definition of the "Sulfide Capacity", CS²⁻, of the melt as CS²⁻ = [S²⁻](fO₂)^{1/2}(fS₂)^{-1/2}, where [S²⁻] is the concentration of S²⁻ in the melt, and is a function of melt composition, temperature and pressure [1]. This theoretical relationship has been validated by experiment over a wide range of silicate melt compositions, e.g., [2]. It was proposed by [1] that the solubility of S as SO₄²⁻ can be described by an analogous reaction: S₂ + 3/2 O₂ + O²⁻(melt) = SO₄²⁻(melt), defining the "Sulfate Capacity" as CSO₄²⁻ [SO₄²⁻](fS₂)^{-1/2}(fO₂)^{-3/2}.

We measured CSO42- in nearly 50 silicate melt compositions, quenched from 1100 to 1500°C after equilibration in a gas-mixing furnace, using SO₂ and O₂ mixtures to control fO₂ and fS₂ in the high fO₂ regime where the concentrations of S²⁻ in the melts are effectively zero. Sulfur contents in the recovered glasses were measured by electron microprobe. Selected compositions were used to verify whether the S contents varied as $(fS_2)^{1/2}(fO_2)^{3/2}$. All were found to do so within experimental uncertainty, confirming the validity of the sulfate solution mechanism, while also implying that the amount of sulfite (S^{4+} or SO_3^{2-}) dissolved in silicate melts is negligible at atmospheric pressure. CSO₄²⁻ varies strongly with the melt composition, increasing with CaO, Na₂O and K₂O, but not with MgO or FeOtot; hence the compositional dependence of CSO42- is very different from that of CS2-, which depends mainly on FeO contents in natural-composition melts [2]. CSO4²⁻ decreases markedly with increasing temperature, much more so than Cs₂. The ratio of sulfate to sulfide in silicate melts is given by $[SO_4^{2-}]/[S^{2-}] = (CSO_4^{2-}/CS^{2-})(fO_2)^2$. Hence sulfate is favoured over sulfide by high CaO, Na₂O and K₂O, and low FeO, and by decreasing temperature at constant fO₂.

 Fincham, C.J.B., & Richardson, F.D. (1954) Proc. Royal Soc. London. Series A. Math. Phys. Sciences, 223, 40-62.
O'Neill, H. St.C., & Mavrogenes, J.A. (2002). J. Petrol., 43, 1049-1087.