Energy Landscapes, Oxidation State Control, and Nanophase Stability in the Critical Zone

A. NAVROTSKY

University of California, Peter A. Rock Termochemistry Lab, Davis, CA 95616, USA anavrotsky@ucdavis.edu

Iron, manganese, and uranium are elements of variable oxidation state in low-temperature aqueous environments. Particle size and interaction with H₂O, CO₂, and other cations all affect crystal structure, phase stability, oxidation state, and solubility. Distinguishing the kinetic and thermodynamic factors in competition among different phases remains a major challenge. Recent progress in understanding nanoparticle stability will be illustrated by examples taken from the Mn₂O₃-MnO₂-H₂O, UO₂-UO₃-SiO₂-H₂O, and Fe₂O₃-Fe₃O₄-H₂O systems, utilizing new calorimetric data on surface energies and formation enthalpies of competing phases.