Structure-Property relationships in barium silicate glasses & crystals: Preliminary results

B. J. A. MOULTON^{1,2*} D. V. SAMPAIO^{1,2}, A. M. RODRIGUES², C. DOERENKAMP³, L. D. SILVA², A. PICININ¹, H. ECKERT^{3,4}, J. P. RINO^{1,2}, E.D. ZANOTTO², P. S. PIZANI^{1,2}

- ¹ Physics Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 13565-905 São Carlos, SP, Brazil, benmoul@df.ufscar.br,
- davidvsampaio@gmail.com, pizani@df.ufscar.br

 ² CERTEV Center for Research, Technology, & Education in Vitreous Materials, Department of Materials Engineering, Federal University of São Carlos, 13565 905 São Carlos-SP, Brazil: www.certev.ufscar.br, dedz@ufscar.br
- ³ Institute of Physics in São Carlos, University of São Paulo, São Carlos, SP 13560-590, Brazil. cdoerenkamp@gmail.com
- ⁴ Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, 48149 Münster, Germany. E-mail: eckerth@uni-muenster.de

This study focuses on the structure-property relationships in the baria-silica system. We have synthesized and simulated a series of barium silicate glasses and minerals covering the compositional range xBaO-(1-x)SiO₂ where $x_{glass} = 0.27$ -0.45 & $x_{crystal} = 0.33$ -0.66. Raman spectroscopy, ²⁹Si NMR, Ba L_3 -edge XANES, and molecular dynamics simulations are correlated with changes in the density and refractive index of these glasses and their crystalline equivalents.

²⁹Si NMR results have been used to calibrate the Raman Qⁿ band deconvolution. NMR and MD results show that the network connectivity increases with silica content, as expected. These results are compared with other alkaline-earth silicate glasses in terms of both their Qⁿ and oxygen speciation.

Detailed comparison between the Raman spectra of barium-silicate glasses and crystals shows some unexpected behaviours. For instance, in minerals, the Si-O-Si bending mode (535-550 cm⁻¹) does not appear to correlate with inter-tetrahedral angle. The origin of this behaviour is currently under investigation, as these modes display a much more diverse behaviour in barium silicate glasses and supercooled liquids.