Enormous excess ²²³Ra in fluids from the Lost City hydrothermal field

WILLARD S. MOORE, JESSICA D. FRANKLE, SUSAN Q. LANG, CLAUDIA BENITEZ-NELSON¹

¹School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA

We have discovered exceptionally high activities (10-100 dpm/L) of excess 223 Ra (half-life = 11 days) in fluids from the Lost City hydrothermal field, a serpentinite-hosted system on the mid-Atlantic Ridge. These activities surpass any published measurements of ²²³Ra in seawater or other hydrothermal fluids by factors of 50 to 500. In sharp contrast to fluids from basalt-hosted settings, no other radium isotopes have unusually high activities in these fluids. In fact, ²²⁸Ra and ^{224}Ra are below detection and ^{226}Ra is ${\sim}1$ dpm/L. In basalt-hosted systems, high (10-70 dpm/L)²²⁶Ra and ²²⁸Ra activities are thought to arise from leaching of the basalt by hydrothermal fluids. For ²²⁴Ra and ²²³Ra, alpha recoil is also important. Basalt-hosted systems have ²²³Ra/²²⁶Ra activity ratios (ARs) <0.05; at Lost City this AR is 10-100, indicating the radium signal is not due to rock alteration. We postulate that the parent of 223 Ra, 231 Pa (half-life = 34,000 years), is scavenged when seawater circulates through the rocky subsurface, similar to the explanation advanced for high ²²³Ra activities measured over the Puna Ridge off Hawaii, although the activities measured at Lost City are orders of magnitude higher. The surface-bound ²³¹Pa generates ²²³Ra, which can be leached by circulating fluids. We measured the emanation of the ²²³Ra daughter, ²¹⁹Rn (half-life = 4 sec.), from the surfaces of carbonate chimneys and host rocks and determined that the emanation is supported by 0.04-0.10 dpm/gm of ²³¹Pa in equilibrium with ²²³Ra. Most of the ²²³Ra on the surfaces is leached by a simulated hydrothermal fluid. These measurements highlight the fact that serpentinehosted systems follow a unique chemistry.