Theoretical estimates of solid-fluid Ca isotopes fractionation in soils

M. Méheut¹, M. Benoît², R. Schurhammer², A.D. Schmitt²

GET, OMP, Université de Toulouse, CNRS,UPS, IRD, CNES, Toulouse, France merlin.meheut@get.omp.eu
CEMES CNRS, Toulouse, France. Magali.benoît@cemes.fr
CMC, Strasbourg, France, rschurhammer@unistra.fr
LHYGES, Strasbourg, France, adschmitt@unistra.fr

In plants and soils, Ca occurs in three different reservoirs: in solids (mostly oxalates), « structurally bound » to organic matter, or dissolved. In particular, Schmitt et al 2018 showed that, in beech barks, dissolved Ca was enriched in heavy isotopes w/r to oxalate crystals (by $\sim 0.6\%$). To interpret these measures, we undertook theoretical studies of Ca isotopes equilibrium fractionation between various solids and Ca²⁺(aq), based on an approach adapted to condensed phases (Dupuis et al 2015). For $Ca^{2+}_{(aq)}$, we realized a short ab initio Molecular Dynamics (AI-MD) trajectory at 300K. All along this trajectory, Ca was 6-fold coordinated. One snapshot was extracted and computed for its isotope fractionation properties. At 25°C, the predicted fractionations w/r to calcite are ^{VI}CaO (+2.2‰) \approx ^{VI}Ca(OH)₂ portlandite (+2‰) \approx ^{VI}Ca²⁺_(aq) (+1.8‰) > Ba^{VI}Ca(CO₃)₂ baryto-calcite (+0.3‰) \approx ^{VII}CaCO₃ vaterite (-0.2‰) \approx (^{VIII}CaC₂O₄·1H₂O) weddelite (- $(0.2\%) \approx (^{\text{VIII}}\text{CaC}_2\text{O}_4 \cdot 1\text{H}_2\text{O}) \text{ whewellite (-0.4\%)} \approx$ $(^{\text{VIII}}\text{CaC}_2\text{O}_4\cdot1\text{H}_2\text{O})$ Caoxite (-0.6‰) \approx $^{\text{VIII}}\text{CaCO}_3,6\text{H}_2\text{O}$ ikaite $(-0.8\%) \approx$ dolomite ^{VI}CaMg(CO₃)₂ (-0.9%) >^{VIII}CaCO₃ aragonite (-3‰). These calculations emphasize the already reported role of coordination (Colla et al 2012, Moynier & Fujii 2017), materials with small Ca coordination showing enriched in heavy isotopes. The fractionation obtained for $Ca^{2+}_{(aq)}$ is consistently close to structures where Ca shows similar environment (CaO and Ca(OH)₂ portlandite), and heavier than oxalates by $\approx +2\%$. This positive fractionation is in contradiction with the conclusions of Moynier & Fujii, but (qualitatively) consistent with the natural obervations of Schmitt et al.

This study emphasizes the criticality of a correct account of the liquid structure, which question will be discussed in more details.

References :

Colla *et al.* 2012 GCA V121, 363-373 Moynier & Fujii 2017 Sci Rep Nat V7 44255 Schmitt *et al.* 2018 Biogeochem. V137(1), 197-217,